Yang Huang, Shaolei Xu, Xingyu Gao, Chuannen Wei, Yang Zhang, Mingfeng Li
{"title":"Feature Point Identification in Fillet Weld Joints Using an Improved CPDA Method","authors":"Yang Huang, Shaolei Xu, Xingyu Gao, Chuannen Wei, Yang Zhang, Mingfeng Li","doi":"10.3390/app131810108","DOIUrl":null,"url":null,"abstract":"An intelligent, vision-guided welding robot is highly desired in machinery manufacturing, the ship industry, and vehicle engineering. The performance of the system greatly depends on the effective identification of weld seam features and the three-dimensional (3D) reconstruction of the weld seam position in a complex industrial environment. In this paper, a 3D visual sensing system with a structured laser projector and CCD camera is developed to obtain the geometry information of fillet weld seams in robot welding. By accounting for the inclination characteristics of the laser stripe in fillet welding, a Gaussian-weighted PCA-based laser center line extraction method is proposed. Smoother laser centerlines can be obtained at large, inclined angles. Furthermore, an improved chord-to-point distance accumulation (CPDA) method with polygon approximation is proposed to identify the feature corner location in center line images. The proposed method is validated numerically with simulated piece-wise linear laser stripes and experimentally with automated robot welding. By comparing this method with the grayscale gravity method, Hessian-matrix-based method, and conventional CPDA method, the proposed improved CPDA method with PCA center extraction is shown to have high accuracy and robustness in noisy welding environments. The proposed method meets the need for vision-aided automated welding robots by achieving greater than 95% accuracy in corner feature point identification in fillet welding.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810108","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An intelligent, vision-guided welding robot is highly desired in machinery manufacturing, the ship industry, and vehicle engineering. The performance of the system greatly depends on the effective identification of weld seam features and the three-dimensional (3D) reconstruction of the weld seam position in a complex industrial environment. In this paper, a 3D visual sensing system with a structured laser projector and CCD camera is developed to obtain the geometry information of fillet weld seams in robot welding. By accounting for the inclination characteristics of the laser stripe in fillet welding, a Gaussian-weighted PCA-based laser center line extraction method is proposed. Smoother laser centerlines can be obtained at large, inclined angles. Furthermore, an improved chord-to-point distance accumulation (CPDA) method with polygon approximation is proposed to identify the feature corner location in center line images. The proposed method is validated numerically with simulated piece-wise linear laser stripes and experimentally with automated robot welding. By comparing this method with the grayscale gravity method, Hessian-matrix-based method, and conventional CPDA method, the proposed improved CPDA method with PCA center extraction is shown to have high accuracy and robustness in noisy welding environments. The proposed method meets the need for vision-aided automated welding robots by achieving greater than 95% accuracy in corner feature point identification in fillet welding.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.