{"title":"Nested Locally Hamiltonian Graphs and the Oberly-Sumner Conjecture","authors":"Johan P. de Wet, M. Frick","doi":"10.7151/dmgt.2346","DOIUrl":null,"url":null,"abstract":"Abstract A graph G is locally 𝒫, abbreviated L𝒫, if for every vertex v in G the open neighbourhood N(v) of v is non-empty and induces a graph with property 𝒫. Specifically, a graph G without isolated vertices is locally connected (LC) if N(v) induces a connected graph for each v ∈ V (G), and locally hamiltonian (LH) if N(v) induces a hamiltonian graph for each v ∈ V (G). A graph G is locally locally 𝒫 (abbreviated L2𝒫) if N(v) is non-empty and induces a locally 𝒫 graph for every v ∈ V (G). This concept is generalized to an arbitrary degree of nesting. For any k 0 we call a graph locally k-nested-hamiltonian if it is LmC for m = 0, 1, . . ., k and LkH (with L0C and L0H meaning connected and hamiltonian, respectively). The class of locally k-nested-hamiltonian graphs contains important subclasses. For example, Skupień had already observed in 1963 that the class of connected LH graphs (which is the class of locally 1-nested-hamiltonian graphs) contains all triangulations of closed surfaces. We show that for any k ≥ 1 the class of locally k-nested-hamiltonian graphs contains all simple-clique (k + 2)-trees. In 1979 Oberly and Sumner proved that every connected K1,3-free graph that is locally connected is hamiltonian. They conjectured that for k ≥ 1, every connected K1,k+3-free graph that is locally (k + 1)-connected is hamiltonian. We show that locally k-nested-hamiltonian graphs are locally (k + 1)-connected and consider the weaker conjecture that every K1,k+3-free graph that is locally k-nested-hamiltonian is hamiltonian. We show that if our conjecture is true, it would be “best possible” in the sense that for every k ≥ 1 there exist K1,k+4-free locally k-nested-hamiltonian graphs that are non-hamiltonian. We also attempt to determine the minimum order of non-hamiltonian locally k-nested-hamiltonian graphs and investigate the complexity of the Hamilton Cycle Problem for locally k-nested-hamiltonian graphs with restricted maximum degree.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2346","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A graph G is locally 𝒫, abbreviated L𝒫, if for every vertex v in G the open neighbourhood N(v) of v is non-empty and induces a graph with property 𝒫. Specifically, a graph G without isolated vertices is locally connected (LC) if N(v) induces a connected graph for each v ∈ V (G), and locally hamiltonian (LH) if N(v) induces a hamiltonian graph for each v ∈ V (G). A graph G is locally locally 𝒫 (abbreviated L2𝒫) if N(v) is non-empty and induces a locally 𝒫 graph for every v ∈ V (G). This concept is generalized to an arbitrary degree of nesting. For any k 0 we call a graph locally k-nested-hamiltonian if it is LmC for m = 0, 1, . . ., k and LkH (with L0C and L0H meaning connected and hamiltonian, respectively). The class of locally k-nested-hamiltonian graphs contains important subclasses. For example, Skupień had already observed in 1963 that the class of connected LH graphs (which is the class of locally 1-nested-hamiltonian graphs) contains all triangulations of closed surfaces. We show that for any k ≥ 1 the class of locally k-nested-hamiltonian graphs contains all simple-clique (k + 2)-trees. In 1979 Oberly and Sumner proved that every connected K1,3-free graph that is locally connected is hamiltonian. They conjectured that for k ≥ 1, every connected K1,k+3-free graph that is locally (k + 1)-connected is hamiltonian. We show that locally k-nested-hamiltonian graphs are locally (k + 1)-connected and consider the weaker conjecture that every K1,k+3-free graph that is locally k-nested-hamiltonian is hamiltonian. We show that if our conjecture is true, it would be “best possible” in the sense that for every k ≥ 1 there exist K1,k+4-free locally k-nested-hamiltonian graphs that are non-hamiltonian. We also attempt to determine the minimum order of non-hamiltonian locally k-nested-hamiltonian graphs and investigate the complexity of the Hamilton Cycle Problem for locally k-nested-hamiltonian graphs with restricted maximum degree.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.