{"title":"Kinect-Based Motion Recognition Tracking Robotic Arm Platform","authors":"Jinxiao Gao, Yinan Chen, Fuhao Li","doi":"10.4236/ICA.2019.103005","DOIUrl":null,"url":null,"abstract":"The development of artificial intelligence technology has promoted the rapid improvement of human-computer interaction. This system uses the Kinect visual image sensor to identify human bone data and complete the recognition of the operator’s movements. Through the filtering process of real-time data by the host computer platform with computer software as the core, the algorithm is programmed to realize the conversion from data to control signals. The system transmits the signal to the lower computer platform with Arduino as the core through the transmission mode of the serial communication, thereby completing the control of the steering gear. In order to verify the feasibility of the theory, the team built a 4-DOF robotic arm control system and completed software development. It can display other functions such as the current bone angle and motion status in real time on the computer operation interface. The experimental data shows that the Kinect-based motion recognition method can effectively complete the tracking of the expected motion and complete the grasping and transfer of the specified objects, which has extremely high operability.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ICA.2019.103005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The development of artificial intelligence technology has promoted the rapid improvement of human-computer interaction. This system uses the Kinect visual image sensor to identify human bone data and complete the recognition of the operator’s movements. Through the filtering process of real-time data by the host computer platform with computer software as the core, the algorithm is programmed to realize the conversion from data to control signals. The system transmits the signal to the lower computer platform with Arduino as the core through the transmission mode of the serial communication, thereby completing the control of the steering gear. In order to verify the feasibility of the theory, the team built a 4-DOF robotic arm control system and completed software development. It can display other functions such as the current bone angle and motion status in real time on the computer operation interface. The experimental data shows that the Kinect-based motion recognition method can effectively complete the tracking of the expected motion and complete the grasping and transfer of the specified objects, which has extremely high operability.