{"title":"Multi-sensor optimal deployment based efficient and synchronous data acquisition in large three-dimensional physical similarity simulation","authors":"Yuyu Hao, Shugang Li, Tian-cai Zhang","doi":"10.1108/aa-06-2021-0074","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to propose a deployment optimization and efficient synchronous acquisition method for compressive stress sensors used by stress distribution law research based on the genetic algorithm and numerical simulations. The authors established a new method of collecting the mining compressive stress-strain distribution data to address the problem of the number of sensors and to optimize the sensor locations in physical similarity simulations to improve the efficiency and accuracy of data collection.\n\n\nDesign/methodology/approach\nFirst, numerical simulations were used to obtain the compressive stress distribution curve under specific mining conditions. Second, by comparing the mean square error between a fitted curve and simulation data for different numbers of sensors, a genetic algorithm was used to optimize the three-dimensional (3D) spatial deployment of sensors. Third, the authors designed an efficient synchronous acquisition module to allow distributed sensors to achieve synchronous and efficient acquisition of hundreds of data points through a built-in on-board database and a synchronous sampling communication structure.\n\n\nFindings\nThe sensor deployment scheme was established through the genetic algorithm, A synchronous and selective data acquisition method was established for reduced the amount of sensor data required under synchronous acquisition and improved the system acquisition efficiency. The authors obtained a 3D compressive stress distribution when the advancement was 200 m on a large-scale 3D physical similarity simulation platform.\n\n\nOriginality/value\nThe proposed method provides a new optimization method for sensor deployment in physical similarity simulations, which improves the efficiency and accuracy of system data acquisition, providing accurate acquisition data for experimental data analysis.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-06-2021-0074","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose a deployment optimization and efficient synchronous acquisition method for compressive stress sensors used by stress distribution law research based on the genetic algorithm and numerical simulations. The authors established a new method of collecting the mining compressive stress-strain distribution data to address the problem of the number of sensors and to optimize the sensor locations in physical similarity simulations to improve the efficiency and accuracy of data collection.
Design/methodology/approach
First, numerical simulations were used to obtain the compressive stress distribution curve under specific mining conditions. Second, by comparing the mean square error between a fitted curve and simulation data for different numbers of sensors, a genetic algorithm was used to optimize the three-dimensional (3D) spatial deployment of sensors. Third, the authors designed an efficient synchronous acquisition module to allow distributed sensors to achieve synchronous and efficient acquisition of hundreds of data points through a built-in on-board database and a synchronous sampling communication structure.
Findings
The sensor deployment scheme was established through the genetic algorithm, A synchronous and selective data acquisition method was established for reduced the amount of sensor data required under synchronous acquisition and improved the system acquisition efficiency. The authors obtained a 3D compressive stress distribution when the advancement was 200 m on a large-scale 3D physical similarity simulation platform.
Originality/value
The proposed method provides a new optimization method for sensor deployment in physical similarity simulations, which improves the efficiency and accuracy of system data acquisition, providing accurate acquisition data for experimental data analysis.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.