Estimación de la distribución vertical de combustibles finos del dosel de copas en masas de Pinus sylvestris empleando datos LiDAR de baja densidad

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2019-06-27 DOI:10.4995/raet.2019.11241
L. González, S. Arellano, J. A. González, F. Dorado, A. R. González, E. G. Ferreiro
{"title":"Estimación de la distribución vertical de combustibles finos del dosel de copas en masas de Pinus sylvestris empleando datos LiDAR de baja densidad","authors":"L. González, S. Arellano, J. A. González, F. Dorado, A. R. González, E. G. Ferreiro","doi":"10.4995/raet.2019.11241","DOIUrl":null,"url":null,"abstract":"Canopy fuel load, canopy bulk density and canopy base height are structural variables used to predict crown fire initiation and spread. Direct measurement of these variables is not functional, and they are usually estimated indirectly by modelling. Advances in fire behaviour modelling require accurate and landscape scale estimates of the complete vertical distribution of canopy fuels. The goal of the present study is to model the vertical profile of available canopy fuels in Scots pine stands by using data from the Spanish national forest inventory and low-density LiDAR data (0.5 first returns  m–2) provided by Spanish PNOA project (Plan Nacional de Ortofotografía Aérea). In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, a system of models was fitted to relate the canopy variables to Lidar-derived metrics. Models were fitted simultaneously to compensate the effects of the inherent cross-model correlation between errors. Heteroscedasticity was also analyzed, but correction in the fitting process was not necessary. The estimated canopy fuel load profiles from LiDAR-derived metrics explained 41% of the variation in canopy fuel load in the analysed plots. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2019.11241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 7

Abstract

Canopy fuel load, canopy bulk density and canopy base height are structural variables used to predict crown fire initiation and spread. Direct measurement of these variables is not functional, and they are usually estimated indirectly by modelling. Advances in fire behaviour modelling require accurate and landscape scale estimates of the complete vertical distribution of canopy fuels. The goal of the present study is to model the vertical profile of available canopy fuels in Scots pine stands by using data from the Spanish national forest inventory and low-density LiDAR data (0.5 first returns  m–2) provided by Spanish PNOA project (Plan Nacional de Ortofotografía Aérea). In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, a system of models was fitted to relate the canopy variables to Lidar-derived metrics. Models were fitted simultaneously to compensate the effects of the inherent cross-model correlation between errors. Heteroscedasticity was also analyzed, but correction in the fitting process was not necessary. The estimated canopy fuel load profiles from LiDAR-derived metrics explained 41% of the variation in canopy fuel load in the analysed plots. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用低密度激光雷达数据估计樟子松薄冠层燃料的垂直分布
冠层燃料负荷、冠层容重和冠层基底高度是预测冠层火灾发生和蔓延的结构变量。直接测量这些变量是无效的,它们通常是通过建模间接估计的。在火灾行为模拟方面的进展需要对树冠燃料的完全垂直分布进行准确和景观尺度的估计。本研究的目标是利用西班牙国家森林清查数据和西班牙PNOA项目(Ortofotografía aacria国家计划)提供的低密度激光雷达数据(0.5次首次返回m-2),对苏格兰松林中可用树冠燃料的垂直剖面进行建模。首先,利用威布尔概率密度函数对舱盖燃料负荷的垂直分布进行建模。在第二步中,拟合了一个模型系统,将冠层变量与激光雷达派生的度量联系起来。同时进行模型拟合,以补偿误差间固有的跨模型相关性的影响。对异方差也进行了分析,但在拟合过程中不需要进行校正。从激光雷达衍生的指标估计的冠层燃料负荷概况解释了在所分析的图中41%的冠层燃料负荷变化。所提出的模型可用于评估不同森林管理方案对减少林冠火灾危害的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1