Alice Vilotte, Clément de Loubens*, Deniz Z. Gunes, Christophe Schmitt and Hugues Bodiguel,
{"title":"Hydrodynamic Spinning of Protein Fractal Aggregates into Core–Shell Fibers","authors":"Alice Vilotte, Clément de Loubens*, Deniz Z. Gunes, Christophe Schmitt and Hugues Bodiguel, ","doi":"10.1021/acsapm.2c00536","DOIUrl":null,"url":null,"abstract":"<p >Using fractal protein aggregates as building blocks, porous fibers were produced. The suspension of aggregates was coinjected with a solution of calcium chloride. Sol–gel transition of the suspension was induced by diffusion of calcium ions in the jet. The production of these fibers required a precise control of both hydrodynamic and physicochemical conditions as hydrodynamic instabilities competed with the gelation kinetics. By increasing the calcium concentration, several regimes were observed: swollen, dispersed, and shrunk fibers. In the first regime, homogeneous fibers were obtained. In the last one, osmotic phenomena led to a spontaneous core–shell structure with a dense shell.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"4 6","pages":"4075–4080"},"PeriodicalIF":4.4000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.2c00536","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Using fractal protein aggregates as building blocks, porous fibers were produced. The suspension of aggregates was coinjected with a solution of calcium chloride. Sol–gel transition of the suspension was induced by diffusion of calcium ions in the jet. The production of these fibers required a precise control of both hydrodynamic and physicochemical conditions as hydrodynamic instabilities competed with the gelation kinetics. By increasing the calcium concentration, several regimes were observed: swollen, dispersed, and shrunk fibers. In the first regime, homogeneous fibers were obtained. In the last one, osmotic phenomena led to a spontaneous core–shell structure with a dense shell.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.