{"title":"Analogue gravity and the island prescription","authors":"Shahrokh Parvizi, Mojtaba Shahbazi","doi":"10.1140/epjc/s10052-023-11874-4","DOIUrl":null,"url":null,"abstract":"<div><p>Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11874-4.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11874-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 2
Abstract
Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.