Extra parameters for conjugate gradient method for removing impulse noise images

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES Pub Date : 2022-11-17 DOI:10.1080/02522667.2022.2117349
Basim A. Hassan, Ali Ahmed A. Abdullah
{"title":"Extra parameters for conjugate gradient method for removing impulse noise images","authors":"Basim A. Hassan, Ali Ahmed A. Abdullah","doi":"10.1080/02522667.2022.2117349","DOIUrl":null,"url":null,"abstract":"Abstract In most applications, denoising a photograph is essential for most image processing processes. In this study, a conjugate gradient method for impulse noise reduction is presented, which is based on a two-phase system. The noise candidates are found with an adaptive (center-weighted) median filter, and then restored with the CG method, which entails the minimization of an edge-preserving regularization functional. The fact that the search direction created at each iteration is descending is one of the most appealing characteristics of the suggested technique. Its global convergence result might be obtained if a strong Wolfe line search is used. The spectral conjugate gradient approach for impulse noise reduction is demonstrated through numerical experiments.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"2055 - 2064"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2117349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In most applications, denoising a photograph is essential for most image processing processes. In this study, a conjugate gradient method for impulse noise reduction is presented, which is based on a two-phase system. The noise candidates are found with an adaptive (center-weighted) median filter, and then restored with the CG method, which entails the minimization of an edge-preserving regularization functional. The fact that the search direction created at each iteration is descending is one of the most appealing characteristics of the suggested technique. Its global convergence result might be obtained if a strong Wolfe line search is used. The spectral conjugate gradient approach for impulse noise reduction is demonstrated through numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共轭梯度法去除脉冲噪声图像的附加参数
摘要在大多数应用中,图像去噪是大多数图像处理过程中必不可少的一部分。本文提出了一种基于两相系统的共轭梯度脉冲降噪方法。使用自适应(中心加权)中值滤波器找到候选噪声,然后使用CG方法恢复,该方法需要最小化边缘保持正则化函数。在每次迭代中创建的搜索方向是递减的,这是所建议的技术最吸引人的特征之一。采用强Wolfe线搜索可以得到全局收敛的结果。通过数值实验验证了谱共轭梯度法在脉冲降噪中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
期刊最新文献
Paediatric liver biopsies: A single-centre experience in Erzincan Binali Yıldırım University. An approach to fuzzy transportation problem using Triacontakaidigon fuzzy number with alpha cut ranking technique Credit strategy of micro, small, and medium enterprises with known reputation risk: Evidence from a comprehensive evaluation model Some results on the open subset intersection graph of a product topological space Deep learning for automatic identification of plants through leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1