M. Shailesh, SK Suman, PK Malti, V. Pol, S. Manna, RV Kolekar, SK Satpati
{"title":"Radiological safety during sodium diuranate dissolution process: A radiological data study","authors":"M. Shailesh, SK Suman, PK Malti, V. Pol, S. Manna, RV Kolekar, SK Satpati","doi":"10.4103/rpe.rpe_12_22","DOIUrl":null,"url":null,"abstract":"The article presents an overview of the occupational radiation protection aspects of experimental sodium diuranate transferring and handling processes required for refining utilization. The health physics aspects and associated monitoring programs necessary to adequately measure and control radiological exposures to workers during the process is described here. A particle size distribution study was also carried out and estimated the activity median aerodynamic diameter (AMAD) for the process. The AMAD varied from 4.6 to 7.7 μm and geometric standard deviation ranged from 1.9 to 2.8. Obtained data serve the purpose of comparison for formulating a detailed radiological safety protocol during regular operation.","PeriodicalId":32488,"journal":{"name":"Radiation Protection and Environment","volume":"45 1","pages":"99 - 103"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Protection and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/rpe.rpe_12_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents an overview of the occupational radiation protection aspects of experimental sodium diuranate transferring and handling processes required for refining utilization. The health physics aspects and associated monitoring programs necessary to adequately measure and control radiological exposures to workers during the process is described here. A particle size distribution study was also carried out and estimated the activity median aerodynamic diameter (AMAD) for the process. The AMAD varied from 4.6 to 7.7 μm and geometric standard deviation ranged from 1.9 to 2.8. Obtained data serve the purpose of comparison for formulating a detailed radiological safety protocol during regular operation.