Comparative Efficiency for in vitro Transfection of Goat Undifferentiated Spermatogonia Using Lipofectamine Reagents and Electroporation

W. Nakami, J. Nguhiu-Mwangi, A. N. Kipyegon, M. Ogugo, C. Muteti, Stephen Kemp
{"title":"Comparative Efficiency for in vitro Transfection of Goat Undifferentiated Spermatogonia Using Lipofectamine Reagents and Electroporation","authors":"W. Nakami, J. Nguhiu-Mwangi, A. N. Kipyegon, M. Ogugo, C. Muteti, Stephen Kemp","doi":"10.2147/SCCAA.S356588","DOIUrl":null,"url":null,"abstract":"Introduction Spermatogonial stem cells (SSC), also referred to as undifferentiated spermatogonia, are the germline stem cells responsible for continuous spermatogenesis throughout a male’s life. They are, therefore, an ideal target for gene editing. Previously, SSC from animal testis have been isolated and transplanted to homologous recipients resulting in the successful reestablishment of donor-derived spermatogenesis. Methods Enhanced green fluorescent protein (eGFP) gene transfection into goat SSC was evaluated using liposomal carriers and electroporation. The cells were isolated from the prepubertal Galla goats testis cultured in serum-free defined media and transfected with the eGFP gene. Green fluorescing of SSC colonies indicated transfection. Results The use of lipofectamineTM stem reagent and lipofectamineTM 2000 carriers resulted in more SSC colonies expressing the eGFP gene (25.25% and 22.25%, respectively). Electroporation resulted in 15% ± 0.54 eGFP expressing SSC colonies. Furthermore, cell viability was higher in lipofectamine transfection (55% ± 0.21) as compared to electroporation (38% ± 0.14). Conclusion These results indicated that lipofectamine was more effective in eGFP gene transfer into SSC. The successful transient transfection points to a possibility of transfecting transgenes into male germ cells in genetic engineering programs.","PeriodicalId":44934,"journal":{"name":"Stem Cells and Cloning-Advances and Applications","volume":"15 1","pages":"11 - 20"},"PeriodicalIF":1.7000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells and Cloning-Advances and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/SCCAA.S356588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction Spermatogonial stem cells (SSC), also referred to as undifferentiated spermatogonia, are the germline stem cells responsible for continuous spermatogenesis throughout a male’s life. They are, therefore, an ideal target for gene editing. Previously, SSC from animal testis have been isolated and transplanted to homologous recipients resulting in the successful reestablishment of donor-derived spermatogenesis. Methods Enhanced green fluorescent protein (eGFP) gene transfection into goat SSC was evaluated using liposomal carriers and electroporation. The cells were isolated from the prepubertal Galla goats testis cultured in serum-free defined media and transfected with the eGFP gene. Green fluorescing of SSC colonies indicated transfection. Results The use of lipofectamineTM stem reagent and lipofectamineTM 2000 carriers resulted in more SSC colonies expressing the eGFP gene (25.25% and 22.25%, respectively). Electroporation resulted in 15% ± 0.54 eGFP expressing SSC colonies. Furthermore, cell viability was higher in lipofectamine transfection (55% ± 0.21) as compared to electroporation (38% ± 0.14). Conclusion These results indicated that lipofectamine was more effective in eGFP gene transfer into SSC. The successful transient transfection points to a possibility of transfecting transgenes into male germ cells in genetic engineering programs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipofectamine试剂与电穿孔法转染山羊未分化精原细胞的比较
引言精原干细胞(SSC),也称为未分化精原细胞,是在男性一生中负责持续精子发生的种系干细胞。因此,它们是基因编辑的理想靶点。以前,已经从动物睾丸中分离出SSC并将其移植到同源受体,从而成功重建了供体来源的精子发生。方法采用脂质体载体和电穿孔技术对增强型绿色荧光蛋白(eGFP)基因转染山羊SSC进行评价。从在无血清培养基中培养的青春期前Galla山羊睾丸中分离细胞,并用eGFP基因转染。SSC集落的绿色荧光指示转染。结果使用lipofectamineTM干细胞试剂和lipoffectamineTM 2000载体可获得更多表达eGFP基因的SSC集落(分别为25.25%和22.25%)。电穿孔产生15%±0.54表达eGFP的SSC集落。此外,与电穿孔(38%±0.14)相比,脂质体胺转染的细胞活力(55%±0.21)更高。结论脂质体胺对eGFP基因转染SSC更有效。这一成功的瞬时转染为基因工程项目中将转基因转染到雄性生殖细胞中指明了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
10
审稿时长
16 weeks
期刊最新文献
Autologous Bone Marrow-Derived Mesenchymal Stem Cells in the Reversal of Unobstructed Azoospermia in Rats. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Intraperitoneal Injection of Graphene Oxide Nanoparticle Accelerates Stem Cell Therapy Effects on Acute Kidney Injury [Retraction]. A Thinkful of "Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System" [Letter].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1