{"title":"Improved sine cosine algorithm for large-scale optimization problems","authors":"Chao Zhang, Yezhou Yang","doi":"10.3724/sp.j.1249.2022.06684","DOIUrl":null,"url":null,"abstract":"体局部开发和逃离局部极值的能力;采用基于空间距离的非线性参数调整方法,平衡算法的局部开发和全 局搜索,提高了算法的收敛速度.在14个经典测试函数上,维度分别为100、1 000和 5 000维时,与SCA、 花授粉算法(flower pollination algorithm,FPA)、粒子群优化(particle swarm optimization,PSO)算法、麻雀搜 索算法(sparrow search algorithm,SSA)和鲸鱼优化算法(whale optimization algorithm,WOA)5种群体智能算法 进行仿真对比实验.结果表明,SCAL算法在收敛精度、收敛速度和鲁棒性上较 5种群体智能算法优势明 显.与解决大规模优化问题的改进狼群算法(improved wolf pack algorithm,IWPA)、改进花授粉算法 (improved flower pollination algorithm,IFPA)、鲸鱼算法的两种改进版本 IWOA(improved whale optimization algorithm)和MWOA(modified whale optimization algorithm)进行比较,发现SCAL的整体寻优结果优于对比算","PeriodicalId":35396,"journal":{"name":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1249.2022.06684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
大规模优化问题的改进正弦余弦算法
体局部开发和逃离局部极值的能力;采用基于空间距离的非线性参数调整方法,平衡算法的局部开发和全 局搜索,提高了算法的收敛速度.在14个经典测试函数上,维度分别为100、1 000和 5 000维时,与SCA、 花授粉算法(flower pollination algorithm,FPA)、粒子群优化(particle swarm optimization,PSO)算法、麻雀搜 索算法(sparrow search algorithm,SSA)和鲸鱼优化算法(whale optimization algorithm,WOA)5种群体智能算法 进行仿真对比实验.结果表明,SCAL算法在收敛精度、收敛速度和鲁棒性上较 5种群体智能算法优势明 显.与解决大规模优化问题的改进狼群算法(improved wolf pack algorithm,IWPA)、改进花授粉算法 (improved flower pollination algorithm,IFPA)、鲸鱼算法的两种改进版本 IWOA(improved whale optimization algorithm)和MWOA(modified whale optimization algorithm)进行比较,发现SCAL的整体寻优结果优于对比算
本文章由计算机程序翻译,如有差异,请以英文原文为准。