{"title":"Testing for random coefficient autoregressive and stochastic unit root models","authors":"Daisuke Nagakura","doi":"10.2139/ssrn.3358301","DOIUrl":null,"url":null,"abstract":"Abstract The random coefficient autoregressive model has been utilized for modeling financial time series because it possesses features that are often observed in financial time series. When the mean of the random coefficient is one, it is called the stochastic unit root model. This paper proposes two Lagrange multiplier tests for the null hypotheses of random coefficient autoregressive and stochastic unit root models against a more general model. We apply our Lagrange multiplier tests to several stock index data, and find that the stochastic unit root model is rejected, whereas the random coefficient autoregressive model is not. This result indicates that it is important to check the validity of the stochastic unit root model prior to applying it to financial time series data, which may be better modeled by the random coefficient autoregressive model with the mean being not equal to one.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"117 - 129"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.3358301","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The random coefficient autoregressive model has been utilized for modeling financial time series because it possesses features that are often observed in financial time series. When the mean of the random coefficient is one, it is called the stochastic unit root model. This paper proposes two Lagrange multiplier tests for the null hypotheses of random coefficient autoregressive and stochastic unit root models against a more general model. We apply our Lagrange multiplier tests to several stock index data, and find that the stochastic unit root model is rejected, whereas the random coefficient autoregressive model is not. This result indicates that it is important to check the validity of the stochastic unit root model prior to applying it to financial time series data, which may be better modeled by the random coefficient autoregressive model with the mean being not equal to one.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.