Recycling of rural abandoned constructed wetlands: mariculture wastewater treatment

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2021-02-02 DOI:10.2166/WRD.2021.107
Yunchuan Xin, Lin Liu, Lili Wei, Xu Huang, Chaoxiang Liu
{"title":"Recycling of rural abandoned constructed wetlands: mariculture wastewater treatment","authors":"Yunchuan Xin, Lin Liu, Lili Wei, Xu Huang, Chaoxiang Liu","doi":"10.2166/WRD.2021.107","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the behavioral shifts of constructed wetland (CW) when the treated water was changed from domestic wastewater to mariculture wastewater. The results showed that the average removal efficiencies of ammonium nitrogen (NH4 -N), total nitrogen and chemical oxygen demand (COD) were 29.54, 46.07 and 57.15% in mariculture wastewater, respectively, which were significantly lower than those in domestic wastewater (71.35, 66.34 and 74.98%, respectively). While there was no significant difference in the removal efficiency of nitrate and phosphate (P> 0.05) between the two systems. Based on the analysis of bacterial community and adsorption properties, the results further indicated that the removal mechanism of NH4 -N between both systems was mainly due to substrate adsorption: the maximum adsorption capacity of NH4 -N on the substrate in mariculture wastewater was 5,432 mg kg , whereas that in domestic wastewater was 18,033 mg kg . In terms of bacterial communities, the dominant bacteria at the family level were Victivallaceae (18.63%) in domestic wastewater and Porphyromonadaceae (18.37%) in mariculture wastewater, which showed the significant alteration to the bacterial community. In conclusion, this study showed that conventional CW could be used for treating wastewater from land-based marine aquaculture, while the operating conditions needed to be optimized in the process of application.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WRD.2021.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6

Abstract

This study aimed to investigate the behavioral shifts of constructed wetland (CW) when the treated water was changed from domestic wastewater to mariculture wastewater. The results showed that the average removal efficiencies of ammonium nitrogen (NH4 -N), total nitrogen and chemical oxygen demand (COD) were 29.54, 46.07 and 57.15% in mariculture wastewater, respectively, which were significantly lower than those in domestic wastewater (71.35, 66.34 and 74.98%, respectively). While there was no significant difference in the removal efficiency of nitrate and phosphate (P> 0.05) between the two systems. Based on the analysis of bacterial community and adsorption properties, the results further indicated that the removal mechanism of NH4 -N between both systems was mainly due to substrate adsorption: the maximum adsorption capacity of NH4 -N on the substrate in mariculture wastewater was 5,432 mg kg , whereas that in domestic wastewater was 18,033 mg kg . In terms of bacterial communities, the dominant bacteria at the family level were Victivallaceae (18.63%) in domestic wastewater and Porphyromonadaceae (18.37%) in mariculture wastewater, which showed the significant alteration to the bacterial community. In conclusion, this study showed that conventional CW could be used for treating wastewater from land-based marine aquaculture, while the operating conditions needed to be optimized in the process of application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农村废弃人工湿地的资源化利用:海水养殖废水处理
本研究旨在研究人工湿地(CW)在处理后的水从生活废水变为海水养殖废水时的行为变化。结果表明,海水养殖废水对氨氮、总氮和化学需氧量的平均去除率分别为29.54%、46.07%和57.15%,显著低于生活污水(分别为71.35%、66.34%和74.98%)。两种体系对硝酸盐和磷酸盐的去除率无显著差异(P>0.05)。通过对细菌群落和吸附特性的分析,结果进一步表明,两种体系对NH4-N的去除机理主要是底物吸附:海水养殖废水中NH4-N在底物上的最大吸附量为5432mg/kg,而生活污水中的最大吸附容量为18033mg/kg。在细菌群落方面,家庭水平上的优势细菌是生活废水中的维多利亚藻科(18.63%)和海水养殖废水中的卟啉单藻科(18.37%),表明细菌群落发生了显著变化。总之,本研究表明,常规CW可以用于处理陆基海洋养殖废水,但在应用过程中需要优化操作条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1