{"title":"Regularization of closed positive currents and intersection theory","authors":"M. Meo","doi":"10.1515/coma-2017-0008","DOIUrl":null,"url":null,"abstract":"Abstract We prove the existence of a closed regularization of the integration current associated to an effective analytic cycle, with a bounded negative part. By means of the King formula, we are reduced to regularize a closed differential form with L1loc coefficients, which by extension has a test value on any positive current with the same support as the cycle. As a consequence, the restriction of a closed positive current to a closed analytic submanifold is well defined as a closed positive current. Lastly, given a closed smooth differential (qʹ, qʹ)-form on a closed analytic submanifold, we prove the existence of a closed (qʹ, qʹ)-current having a restriction equal to that differential form. After blowing up we deal with the case of a hypersurface and then the extension current is obtained as a solution of a linear differential equation of order 1.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"4 1","pages":"120 - 136"},"PeriodicalIF":0.5000,"publicationDate":"2017-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2017-0008","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2017-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 59
Abstract
Abstract We prove the existence of a closed regularization of the integration current associated to an effective analytic cycle, with a bounded negative part. By means of the King formula, we are reduced to regularize a closed differential form with L1loc coefficients, which by extension has a test value on any positive current with the same support as the cycle. As a consequence, the restriction of a closed positive current to a closed analytic submanifold is well defined as a closed positive current. Lastly, given a closed smooth differential (qʹ, qʹ)-form on a closed analytic submanifold, we prove the existence of a closed (qʹ, qʹ)-current having a restriction equal to that differential form. After blowing up we deal with the case of a hypersurface and then the extension current is obtained as a solution of a linear differential equation of order 1.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.