On the density of lines and Santalo’s formula for computing geometric size measures

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2020-08-05 DOI:10.1515/mcma-2020-2071
Khaldoun El-Khaldi, E. Saleeby
{"title":"On the density of lines and Santalo’s formula for computing geometric size measures","authors":"Khaldoun El-Khaldi, E. Saleeby","doi":"10.1515/mcma-2020-2071","DOIUrl":null,"url":null,"abstract":"Abstract Methods from integral geometry and geometric probability allow us to estimate geometric size measures indirectly. In this article, a Monte Carlo algorithm for simultaneous estimation of hyper-volumes and hyper-surface areas of a class of compact sets in Euclidean space is developed. The algorithm is based on Santalo’s formula and the Hadwiger formula from integral geometry, and employs a comparison principle to assign geometric probabilities. An essential component of the method is to be able to generate uniform sets of random lines on the sphere. We utilize an empirically established method to generate these random chords, and we describe a geometric randomness model associated with it. We verify our results by computing measures for hyper-ellipsoids and certain non-convex sets.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"315 - 323"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Methods from integral geometry and geometric probability allow us to estimate geometric size measures indirectly. In this article, a Monte Carlo algorithm for simultaneous estimation of hyper-volumes and hyper-surface areas of a class of compact sets in Euclidean space is developed. The algorithm is based on Santalo’s formula and the Hadwiger formula from integral geometry, and employs a comparison principle to assign geometric probabilities. An essential component of the method is to be able to generate uniform sets of random lines on the sphere. We utilize an empirically established method to generate these random chords, and we describe a geometric randomness model associated with it. We verify our results by computing measures for hyper-ellipsoids and certain non-convex sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于线的密度和桑塔洛计算几何尺寸的公式
摘要从积分几何和几何概率的方法允许我们间接估计几何尺寸测度。本文提出了一种同时估计欧氏空间中一类紧集的超体积和超表面积的蒙特卡罗算法。该算法基于Santalo公式和积分几何中的Hadwiger公式,并采用比较原理来分配几何概率。该方法的一个重要组成部分是能够在球体上生成均匀的随机线集。我们利用一种经验建立的方法来生成这些随机弦,并描述了一个与之相关的几何随机性模型。我们通过计算超椭球和某些非凸集的测度来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1