LUSTRE: An Online Data Management and Student Project Resource

IF 1.5 Q2 EDUCATION, SCIENTIFIC DISCIPLINES Journal of Statistics and Data Science Education Pub Date : 2022-08-30 DOI:10.1080/26939169.2022.2118645
J. Towse, R. Davies, Ellie Ball, Rebecca James, Ben Gooding, Matthew Ivory
{"title":"LUSTRE: An Online Data Management and Student Project Resource","authors":"J. Towse, R. Davies, Ellie Ball, Rebecca James, Ben Gooding, Matthew Ivory","doi":"10.1080/26939169.2022.2118645","DOIUrl":null,"url":null,"abstract":"Abstract We advocate for greater emphasis in training students about data management, within the context of supporting experience in reproducible workflows. We introduce the Lancaster University STatistics REsources (LUSTRE) package, used to manage student research project data in psychology and build capacity with respect to data acumen. LUSTRE provides a safe space to engage students with open research practices—by making tangible different phases of the reproducible research pipeline, while emphasizing its value as a transferable skill. It is an open-source online data catalogue that captures key data management information about a student research project of potential relevance to data scientists. Embedded within a taught programme, it also highlights concepts and examples of data management processes. We document a portfolio of open teaching resources for LUSTRE, and consider how others can implement or adapt them to facilitate data management and open research. We discuss the role of LUSTRE as a; (a) resource and set of activities for promoting good data management practices; (b) framework to enable the delivery of key concepts in open research; (c) an online system to organize and showcase project work.","PeriodicalId":34851,"journal":{"name":"Journal of Statistics and Data Science Education","volume":"30 1","pages":"266 - 273"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistics and Data Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26939169.2022.2118645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We advocate for greater emphasis in training students about data management, within the context of supporting experience in reproducible workflows. We introduce the Lancaster University STatistics REsources (LUSTRE) package, used to manage student research project data in psychology and build capacity with respect to data acumen. LUSTRE provides a safe space to engage students with open research practices—by making tangible different phases of the reproducible research pipeline, while emphasizing its value as a transferable skill. It is an open-source online data catalogue that captures key data management information about a student research project of potential relevance to data scientists. Embedded within a taught programme, it also highlights concepts and examples of data management processes. We document a portfolio of open teaching resources for LUSTRE, and consider how others can implement or adapt them to facilitate data management and open research. We discuss the role of LUSTRE as a; (a) resource and set of activities for promoting good data management practices; (b) framework to enable the delivery of key concepts in open research; (c) an online system to organize and showcase project work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LUSTRE:一个在线数据管理和学生项目资源
摘要我们主张在支持可复制工作流程经验的背景下,更加重视对学生的数据管理培训。我们介绍了兰开斯特大学统计资源(LUSTRE)包,用于管理学生心理学研究项目数据,并建立数据敏锐性方面的能力。LUSTRE提供了一个安全的空间,让学生参与开放的研究实践——通过在可复制的研究管道中建立有形的不同阶段,同时强调其作为一种可转移技能的价值。这是一个开源的在线数据目录,捕获了与数据科学家潜在相关的学生研究项目的关键数据管理信息。在教学课程中,它还强调了数据管理过程的概念和示例。我们为LUSTRE记录了一组开放教学资源,并考虑其他人如何实施或调整这些资源,以促进数据管理和开放研究。我们讨论了LUSTRE作为;(a) 促进良好数据管理做法的资源和一套活动;(b) 在开放研究中提供关键概念的框架;(c) 组织和展示项目工作的在线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistics and Data Science Education
Journal of Statistics and Data Science Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
3.90
自引率
35.30%
发文量
52
审稿时长
12 weeks
期刊最新文献
Investigating Sensitive Issues in Class Through Randomized Response Polling Teaching Students to Read COVID-19 Journal Articles in Statistics Courses Journal of Statistics and Data Science Education 2023 Associate Editors Interviews of Notable Statistics and Data Science Educators Coding Code: Qualitative Methods for Investigating Data Science Skills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1