EVALUATION OF THE DESTRUCTION POTENTIAL OF Zr-DOPED TiO2NANOPARTICLES FOR THE ABATEMENT of H2S GAS

IF 0.9 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Optoelectronic and Biomedical Materials Pub Date : 2020-07-01 DOI:10.15251/jobm.2020.123.89
N. Shahzad, N. Ali, N. Ahmad
{"title":"EVALUATION OF THE DESTRUCTION POTENTIAL OF Zr-DOPED TiO2NANOPARTICLES FOR THE ABATEMENT of H2S GAS","authors":"N. Shahzad, N. Ali, N. Ahmad","doi":"10.15251/jobm.2020.123.89","DOIUrl":null,"url":null,"abstract":"Due to its toxicity, destruction of H2S gas has been an important topic of researchers. Many studies have been carried for investigating various techniques for the removal of this gas. One of those techniques is catalytic and photocatalytic destruction of H2S gas using various catalysts including TiO2 owing to its significant potential for degradation of various pollutants. This study investigates the destruction potential of Zr doped TiO2 for the abatement of H2S gas. The catalysts were characterized using different techniques like XRD, SEM, XRF. The catalytic experiments were performed using fixed bed catalyst system. The samples were analyzed using GC-MC technique and it was revealed that the Zr doping of TiO2 did not favour positively towards enhancing the H2S destruction potential as found in other studies.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optoelectronic and Biomedical Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jobm.2020.123.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its toxicity, destruction of H2S gas has been an important topic of researchers. Many studies have been carried for investigating various techniques for the removal of this gas. One of those techniques is catalytic and photocatalytic destruction of H2S gas using various catalysts including TiO2 owing to its significant potential for degradation of various pollutants. This study investigates the destruction potential of Zr doped TiO2 for the abatement of H2S gas. The catalysts were characterized using different techniques like XRD, SEM, XRF. The catalytic experiments were performed using fixed bed catalyst system. The samples were analyzed using GC-MC technique and it was revealed that the Zr doping of TiO2 did not favour positively towards enhancing the H2S destruction potential as found in other studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zr掺杂TiO2纳米颗粒对H2S气体的破坏潜力评价
由于其毒性,H2S气体的破坏一直是研究人员的重要课题。已经进行了许多研究来研究去除这种气体的各种技术。其中一种技术是使用包括TiO2在内的各种催化剂对H2S气体进行催化和光催化破坏,因为其具有降解各种污染物的显著潜力。本研究调查了Zr掺杂TiO2对H2S气体的破坏潜力。使用XRD、SEM、XRF等不同技术对催化剂进行了表征。采用固定床催化剂体系进行了催化实验。使用GC-MC技术对样品进行了分析,结果表明,TiO2的Zr掺杂并不像其他研究中发现的那样有利于增强H2S的破坏潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Optoelectronic and Biomedical Materials
Journal of Optoelectronic and Biomedical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
7
期刊最新文献
Antifungal and visible light driven photocatalytic degradation of Brilliant green dye by Ceria–Zirconia Nanocomposites De novo fabrication of oral insulin-loaded chitosan/dextrin/pectin nanospheres and their antidiabetic efficacy in streptozotocin-induced diabetic rats Wearable flexible Kapton-graphene electromagnetic sensors Performance analysis of OTFT with varying semiconductor film thickness for future flexible electronics Investigation of optical and dispersion parameters poly vinyl alcohol doped Safranin O dye (PVA/SO) thin film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1