{"title":"Properties of self-compacting mortar made with various mineralogical sources different types of sands and fillers","authors":"B. Nécira, Y. Abadou","doi":"10.1108/WJE-10-2020-0483","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBy its high fluidity, great deformability and rheological stability, the self-compacting mortar (SCM) is capable of ensuring the ability to be easily implemented without vibration. However, its formulation requires a large volume of fine materials with a high dosage of cement, which is necessary to ensure adequate workability and mechanical strengths, which is necessary to allow its flow. Current environmental considerations encourage reducing the production of cement, it is essential to use additions to replace the cement, because of their great availability and their moderate price. On another side, their use contributes to an economic sort to solve the problems related to the environment.\n\n\nDesign/methodology/approach\nThe formulations and characteristics of SCM made with two types of mineralogical sources (silica and limestone) were investigated. Different materials were used separately and in binary combinations; silica river sand (SRS), limestone quarry sand (LQS), silica fillers (SF) and limestone fillers (LF). The formulation starts with the self-compacting pastes (SCPs) then the SCMs at the SRS and the LQS whose the cement is partially replaced by volume contents of SF and LF with 15%, 30% and 45%.\n\n\nFindings\nThe results obtained prove that the incorporation of LQS instead of SRS has a negative effect on the fluidity and deformability and a positive effect on the mechanical strengths of SCM. In addition, the incorporation of the SF and LF reduces the need for water and the saturation dose of superplasticizer in the pastes. Thus, the addition of the SF and LF in specific voluminal contents (15% SF and 30% LF) in the binder can have a beneficial effect on the parameters of the workability and the mechanical strengths of SCM. These results are very interesting to aspects such as technological, economic and environmental.\n\n\nOriginality/value\nInfluence of the different type of sands and fillers in improvements the properties of SCM made from various mineralogical sources.\n","PeriodicalId":23852,"journal":{"name":"World Journal of Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/WJE-10-2020-0483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Purpose
By its high fluidity, great deformability and rheological stability, the self-compacting mortar (SCM) is capable of ensuring the ability to be easily implemented without vibration. However, its formulation requires a large volume of fine materials with a high dosage of cement, which is necessary to ensure adequate workability and mechanical strengths, which is necessary to allow its flow. Current environmental considerations encourage reducing the production of cement, it is essential to use additions to replace the cement, because of their great availability and their moderate price. On another side, their use contributes to an economic sort to solve the problems related to the environment.
Design/methodology/approach
The formulations and characteristics of SCM made with two types of mineralogical sources (silica and limestone) were investigated. Different materials were used separately and in binary combinations; silica river sand (SRS), limestone quarry sand (LQS), silica fillers (SF) and limestone fillers (LF). The formulation starts with the self-compacting pastes (SCPs) then the SCMs at the SRS and the LQS whose the cement is partially replaced by volume contents of SF and LF with 15%, 30% and 45%.
Findings
The results obtained prove that the incorporation of LQS instead of SRS has a negative effect on the fluidity and deformability and a positive effect on the mechanical strengths of SCM. In addition, the incorporation of the SF and LF reduces the need for water and the saturation dose of superplasticizer in the pastes. Thus, the addition of the SF and LF in specific voluminal contents (15% SF and 30% LF) in the binder can have a beneficial effect on the parameters of the workability and the mechanical strengths of SCM. These results are very interesting to aspects such as technological, economic and environmental.
Originality/value
Influence of the different type of sands and fillers in improvements the properties of SCM made from various mineralogical sources.
期刊介绍:
The main focus of the World Journal of Engineering (WJE) is on, but not limited to; Civil Engineering, Material and Mechanical Engineering, Electrical and Electronic Engineering, Geotechnical and Mining Engineering, Nanoengineering and Nanoscience The journal bridges the gap between materials science and materials engineering, and between nano-engineering and nano-science. A distinguished editorial board assists the Editor-in-Chief, Professor Sun. All papers undergo a double-blind peer review process. For a full list of the journal''s esteemed review board, please see below.