Shock wave propagation in a double room model

IF 2.1 Q2 ENGINEERING, CIVIL International Journal of Protective Structures Pub Date : 2022-11-01 DOI:10.1177/20414196221137918
G. Ruscade, I. Sochet, K. Djafer
{"title":"Shock wave propagation in a double room model","authors":"G. Ruscade, I. Sochet, K. Djafer","doi":"10.1177/20414196221137918","DOIUrl":null,"url":null,"abstract":"Nowadays, the safety of infrastructure and people is a primary concern. To ensure safety in public, industrial, or military facilities, it is necessary to be able to predict the behavior of shock waves in any environment. However, while the physical phenomena that occur in free field are well known, they cannot be applied to follow the path of a shock wave in a closed medium, where the phenomena are more complex. The aim of the present study was to define the origins of the different reflections and the path followed by the shock waves after the first reflection in a closed environment composed of two chambers separated by a wall with a variable opening. To achieve this, a fast code was developed based on the shortest path algorithm to determine the parameters of the shock wave at any point of a simple geometry. The code was designed from small-scale experiments that enabled the predictive laws of the distribution of maximum overpressure, total impulse, and the arrival times of the first four peaks to be established. An application of the code is presented in the last part of the paper.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196221137918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the safety of infrastructure and people is a primary concern. To ensure safety in public, industrial, or military facilities, it is necessary to be able to predict the behavior of shock waves in any environment. However, while the physical phenomena that occur in free field are well known, they cannot be applied to follow the path of a shock wave in a closed medium, where the phenomena are more complex. The aim of the present study was to define the origins of the different reflections and the path followed by the shock waves after the first reflection in a closed environment composed of two chambers separated by a wall with a variable opening. To achieve this, a fast code was developed based on the shortest path algorithm to determine the parameters of the shock wave at any point of a simple geometry. The code was designed from small-scale experiments that enabled the predictive laws of the distribution of maximum overpressure, total impulse, and the arrival times of the first four peaks to be established. An application of the code is presented in the last part of the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双人间模型中的冲击波传播
如今,基础设施和人员的安全是首要问题。为了确保公共、工业或军事设施的安全,有必要能够预测任何环境下冲击波的行为。然而,虽然在自由场中发生的物理现象是众所周知的,但它们不能应用于在封闭介质中跟踪激波的路径,因为封闭介质中的现象更为复杂。本研究的目的是确定不同反射的来源和冲击波在封闭环境中第一次反射后的路径,该环境由两个由可变开口墙隔开的腔室组成。为了实现这一目标,开发了基于最短路径算法的快速代码,以确定简单几何形状任意点的激波参数。该代码是根据小型实验设计的,可以建立最大超压分布、总冲量和前四个峰值到达时间的预测规律。最后给出了该代码的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
期刊最新文献
Numerical modeling and simulation of cable barriers under vehicular impacts on a sloped median Experimental study of the low-velocity impact behavior of open-cell aluminum foam made by the infiltration method Wave-absorbing performance of alumina thin-walled hollow particles under freezing condition On the penetration of rigid spheres in metallic targets High-velocity impact experiments and quantitative damage evaluation for finite ultra-high-performance concrete targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1