Bonding performance and mechanism of a heat-resistant composite precursor adhesive (RT-1000∘C) for TC4 titanium alloy

Mingchao Wang, Fanxing Bu, C. Zhou, Qingjun Zhou, T. Wei, Jiachen Liu, Wenzheng Zhai
{"title":"Bonding performance and mechanism of a heat-resistant composite precursor adhesive (RT-1000∘C) for TC4 titanium alloy","authors":"Mingchao Wang, Fanxing Bu, C. Zhou, Qingjun Zhou, T. Wei, Jiachen Liu, Wenzheng Zhai","doi":"10.1142/s2424913020500162","DOIUrl":null,"url":null,"abstract":"To facilitate the repairing and connecting processes for the non-main bearing TC4 alloy, a high-temperature (up to 1000[Formula: see text]C) resistant adhesive that is converted to the composite of intermetallics and ceramics is prepared. The composition evolution of the adhesive, the structure changes in the bonding layer, the reaction process at interfaces and the fracture mode of joints are comprehensively studied to explore its bonding mechanism. The results show that chemical bonding mechanism based on the formation of Ti5Si3 plays a critical role at 600[Formula: see text]C, and acts as the crucial one at elevated temperatures. As the reaction interlayer (2–5[Formula: see text][Formula: see text]m) is far thinner than the entire bonding layer (60–70[Formula: see text][Formula: see text]m), mechanical properties of the adhesive dominate the bonding performance, which is tied up with the composition and structure evolution. The differ of coefficient of thermal expansion (CTE) between the adhesive and the substrate remains lower than [Formula: see text][Formula: see text]K[Formula: see text] in range of 500–1000[Formula: see text]C. Specifically, the formation of composites from intermetallics and ceramics improves the mechanical properties and heat-resistant of the adhesive. The bonding strength reaches [Formula: see text]40[Formula: see text]MPa after pre-treatment at 1000[Formula: see text]C without pressure, and remains over 30[Formula: see text]MPa within the normal operating temperature range of 500–700[Formula: see text]C.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913020500162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 15

Abstract

To facilitate the repairing and connecting processes for the non-main bearing TC4 alloy, a high-temperature (up to 1000[Formula: see text]C) resistant adhesive that is converted to the composite of intermetallics and ceramics is prepared. The composition evolution of the adhesive, the structure changes in the bonding layer, the reaction process at interfaces and the fracture mode of joints are comprehensively studied to explore its bonding mechanism. The results show that chemical bonding mechanism based on the formation of Ti5Si3 plays a critical role at 600[Formula: see text]C, and acts as the crucial one at elevated temperatures. As the reaction interlayer (2–5[Formula: see text][Formula: see text]m) is far thinner than the entire bonding layer (60–70[Formula: see text][Formula: see text]m), mechanical properties of the adhesive dominate the bonding performance, which is tied up with the composition and structure evolution. The differ of coefficient of thermal expansion (CTE) between the adhesive and the substrate remains lower than [Formula: see text][Formula: see text]K[Formula: see text] in range of 500–1000[Formula: see text]C. Specifically, the formation of composites from intermetallics and ceramics improves the mechanical properties and heat-resistant of the adhesive. The bonding strength reaches [Formula: see text]40[Formula: see text]MPa after pre-treatment at 1000[Formula: see text]C without pressure, and remains over 30[Formula: see text]MPa within the normal operating temperature range of 500–700[Formula: see text]C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TC4钛合金耐热复合前驱体粘合剂(RT-1000°C)的粘接性能及机理
为了便于非主轴承TC4合金的修复和连接过程,制备了一种耐高温(高达1000[公式:见正文]C)的粘合剂,该粘合剂可转化为金属间化合物和陶瓷的复合材料。综合研究了胶粘剂的成分演变、粘结层结构变化、界面反应过程和接头断裂模式,探讨了其粘结机理。结果表明,基于Ti5Si3形成的化学键合机制在600[式:见正文]C下起着关键作用,在高温下起着至关重要的作用。由于反应中间层(2–5[公式:见正文][公式:见文本]m)远比整个粘合层(60–70[公式:看正文][公式,见正文]m)薄,粘合剂的机械性能主导着粘合性能,这与组成和结构演变有关。粘合剂和基材之间的热膨胀系数(CTE)差异保持低于[公式:见正文][公式:见文本]K[公式:参见文本],范围为500–1000[公式:见图文本]C。具体而言,由金属间化合物和陶瓷形成的复合材料提高了粘合剂的机械性能和耐热性。在1000℃无压力预处理后,结合强度达到[公式:见正文]40[公式:见图正文]MPa,在500–700的正常工作温度范围内保持在30以上[公式:参见正文]MPa[公式:详见正文]C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
期刊最新文献
Computational study of substituent effects on Molecular structure, vibrational and electronic properties of Fluorene molecule using density functional theory. Thermodynamical applications in Teleparallel Tachyonic model Topological characterization of three classes of complex networks and their graphical representation and Analysis A Computational Study on Buckling Strength of Pressurized Submarine Pressure Hull Structures under Combined Static Load and Asymmetric Impact Load Analyzing Polycyclic Aromatic Hydrocarbons using Topological Indices and QSPR Analysis to Reveal Molecular Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1