Christophe Audouze, Aaron E. Klein, Adrian Butscher, Nigel Morris, P. Nair, M. Yano
{"title":"Robust Level-Set-Based Topology Optimization Under Uncertainties Using Anchored ANOVA Petrov–Galerkin Method","authors":"Christophe Audouze, Aaron E. Klein, Adrian Butscher, Nigel Morris, P. Nair, M. Yano","doi":"10.1137/22m1524722","DOIUrl":null,"url":null,"abstract":". We present a non-intrusive approach to robust structural topology optimization. Specifically, we consider optimization of mean- and variance-based robustness metrics of a linear functional output associated with the linear elasticity equation in the presence of probabilistic un- certainties in the loading and material properties. To provide an efficient approximation of higher-dimensional problems, we approximate the solution to the governing stochastic partial differential equations using the anchored ANOVA Petrov-Galerkin (AAPG) projection scheme. We then develop a non-intrusive quadrature-based formulation to evaluate the robustness metric and the associated shape derivative. The formulation is non-intrusive in the sense that it works with any level-set-based topology optimization code that can provide deterministic displacements, outputs, and shape deriva- tives for selected stochastic parameter values. We demonstrate the effectiveness of the proposed approach on various problems under loading and material uncertainties.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1524722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
. We present a non-intrusive approach to robust structural topology optimization. Specifically, we consider optimization of mean- and variance-based robustness metrics of a linear functional output associated with the linear elasticity equation in the presence of probabilistic un- certainties in the loading and material properties. To provide an efficient approximation of higher-dimensional problems, we approximate the solution to the governing stochastic partial differential equations using the anchored ANOVA Petrov-Galerkin (AAPG) projection scheme. We then develop a non-intrusive quadrature-based formulation to evaluate the robustness metric and the associated shape derivative. The formulation is non-intrusive in the sense that it works with any level-set-based topology optimization code that can provide deterministic displacements, outputs, and shape deriva- tives for selected stochastic parameter values. We demonstrate the effectiveness of the proposed approach on various problems under loading and material uncertainties.