Kinetics, Isotherm and Thermodynamic Studies of the Adsorption of Reactive Red 239 Dye from Aqueous Solution by Chitosan 8B

S. Karmaker, Farin Sintaha, T. Saha
{"title":"Kinetics, Isotherm and Thermodynamic Studies of the Adsorption of Reactive Red 239 Dye from Aqueous Solution by Chitosan 8B","authors":"S. Karmaker, Farin Sintaha, T. Saha","doi":"10.4236/ABC.2019.91001","DOIUrl":null,"url":null,"abstract":"The adsorption of reactive red 239 (RR239) dye onto chitosan 8B was studied in aqueous solution at various pHs, initial dye concentrations, ionic strengths and temperatures, respectively. The adsorption of dye onto chitosan 8B was confirmed by diffuse reflectance electronic absorption spectra. The adsorption of RR239 onto chitosan 8B was greatly influenced by solution pHs, initial dye concentrations, ionic strengths and temperatures. The kinetics and mechanism of dye adsorption process were analyzed by pseudo first-, second-order, Elovich and intraparticle diffusion kinetic models. The adsorption kinetics of RR239 dye followed a pseudo second-order model very well. The surface sorption and intraparticle diffusion mechanisms were involved in the actual sorption process. The equilibrium isotherm data were fitted well with the Langmuir model rather than the Freundlich, Temkin and Dubinin-Radushkevich models. The maximum dye adsorption onto chitosan 8B was estimated to be 163.93 μmol/g at 45°C. The activation energy (Ea) was obtained to be 23.30 kJ/mol. The computed thermodynamic parameters such as ΔG, ΔH, ΔS, ΔG, ΔH and ΔS confirmed that the adsorption of RR239 dye onto chitosan 8B was a spontaneous endothermic physisorption process. Desorption test was carried out in NaOH solution (pH 12.5) and the chitosan flakes could be reused.","PeriodicalId":59114,"journal":{"name":"生物化学进展(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物化学进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ABC.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The adsorption of reactive red 239 (RR239) dye onto chitosan 8B was studied in aqueous solution at various pHs, initial dye concentrations, ionic strengths and temperatures, respectively. The adsorption of dye onto chitosan 8B was confirmed by diffuse reflectance electronic absorption spectra. The adsorption of RR239 onto chitosan 8B was greatly influenced by solution pHs, initial dye concentrations, ionic strengths and temperatures. The kinetics and mechanism of dye adsorption process were analyzed by pseudo first-, second-order, Elovich and intraparticle diffusion kinetic models. The adsorption kinetics of RR239 dye followed a pseudo second-order model very well. The surface sorption and intraparticle diffusion mechanisms were involved in the actual sorption process. The equilibrium isotherm data were fitted well with the Langmuir model rather than the Freundlich, Temkin and Dubinin-Radushkevich models. The maximum dye adsorption onto chitosan 8B was estimated to be 163.93 μmol/g at 45°C. The activation energy (Ea) was obtained to be 23.30 kJ/mol. The computed thermodynamic parameters such as ΔG, ΔH, ΔS, ΔG, ΔH and ΔS confirmed that the adsorption of RR239 dye onto chitosan 8B was a spontaneous endothermic physisorption process. Desorption test was carried out in NaOH solution (pH 12.5) and the chitosan flakes could be reused.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖8B吸附活性红239染料的动力学、等温线和热力学研究
研究了壳聚糖8B在不同ph值、初始染料浓度、离子强度和温度条件下对活性红239 (RR239)染料的吸附性能。用漫反射电子吸收光谱证实了壳聚糖8B对染料的吸附作用。壳聚糖8B对RR239的吸附受溶液ph、初始染料浓度、离子强度和温度的影响较大。采用拟一阶、二阶、Elovich和颗粒内扩散动力学模型分析了染料吸附过程的动力学和机理。对RR239染料的吸附动力学符合准二阶模型。实际吸附过程包括表面吸附和颗粒内扩散机制。与Freundlich、Temkin和Dubinin-Radushkevich模型相比,Langmuir模型能较好地拟合平衡等温线数据。45℃时,壳聚糖8B对染料的最大吸附量为163.93 μmol/g。得到的活化能Ea为23.30 kJ/mol。计算得到的热力学参数ΔG、ΔH、ΔS、ΔG、ΔH和ΔS证实了壳聚糖8B对RR239染料的吸附是一个自发吸热的物理吸附过程。在NaOH溶液(pH 12.5)中进行脱附试验,壳聚糖薄片可重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
251
期刊最新文献
Radiation-Induced Chromosome Instability in WTK1 and TK6 Human Lymphoblastoid Cells Association between Metabolic Syndrome Components and Serum High-Sensitivity C-Reactive Protein or Interleukin-6 Levels among Congolese Adults Possible Relevance of the Allende Meteorite Conditions in Prebiotic Chemistry: An Insight into the Chondrules and Organic Compounds Persistently High Glycated Hemoglobin in a Subgroup of Type 2 Diabetic Patients Who Failed Usual Oral Antihyperglycemics and Insulin in Côte d’Ivoire Starch Metabolism in Plant and Its Applications in Food Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1