Creep deformation measurement of ex‐service 12% Cr steel over nonuniform stress fields using digital image correlation
IF 1.8 3区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTINGStrainPub Date : 2021-07-30DOI:10.1111/str.12400
M. Rooyen, A. Forsey, S. Gungor, T. Becker
{"title":"Creep deformation measurement of ex‐service 12% Cr steel over nonuniform stress fields using digital image correlation","authors":"M. Rooyen, A. Forsey, S. Gungor, T. Becker","doi":"10.1111/str.12400","DOIUrl":null,"url":null,"abstract":"Deterioration assessment of materials is essential to the continued effective operation of critical components in thermal power plants. Establishing the degree of creep exhaustion of power engineering alloys operating at high temperatures and stresses guides maintenance strategies to ensure reliable plant operation. Within progressive inspection philosophies, traditional laboratory‐based creep testing is often difficult to conduct on ex‐service steel due to the limited material availability from which to machine standard specimen geometries. This work investigates a technique for the measurement of creep strain curves at several stresses and at 600°C from a single test using a nontraditional specimen geometry together with full‐field strain measurement through digital image correlation (DIC). Of interest is ex‐service X20CrMoV12‐1 (X20) which is widely used in older, subcritical thermal power plants. The paper aims to show that multiple creep curves can be resolved over a spatially varying stress field using DIC whilst preserving material economy. Differences in creep behaviour between ex‐service X20 with varying levels of service exposure are evident from quantitative comparisons of the creep strain and rate curves through threshold stress computation which agrees with hardness measurements and microstructural observation of subgrains and precipitates using electron microscopy. These single‐specimen tests yield high densities of creep data which can be used in the calibration of creep damage models for characterisation of ex‐service X20.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/str.12400","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12400","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 3
Abstract
Deterioration assessment of materials is essential to the continued effective operation of critical components in thermal power plants. Establishing the degree of creep exhaustion of power engineering alloys operating at high temperatures and stresses guides maintenance strategies to ensure reliable plant operation. Within progressive inspection philosophies, traditional laboratory‐based creep testing is often difficult to conduct on ex‐service steel due to the limited material availability from which to machine standard specimen geometries. This work investigates a technique for the measurement of creep strain curves at several stresses and at 600°C from a single test using a nontraditional specimen geometry together with full‐field strain measurement through digital image correlation (DIC). Of interest is ex‐service X20CrMoV12‐1 (X20) which is widely used in older, subcritical thermal power plants. The paper aims to show that multiple creep curves can be resolved over a spatially varying stress field using DIC whilst preserving material economy. Differences in creep behaviour between ex‐service X20 with varying levels of service exposure are evident from quantitative comparisons of the creep strain and rate curves through threshold stress computation which agrees with hardness measurements and microstructural observation of subgrains and precipitates using electron microscopy. These single‐specimen tests yield high densities of creep data which can be used in the calibration of creep damage models for characterisation of ex‐service X20.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.