High mechanical performance of 3-aminopropyl triethoxy silane/epoxy cured in a sandwich construction of 3D carbon felts foam and woven basalt fibers

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanotechnology Reviews Pub Date : 2023-01-01 DOI:10.1515/ntrev-2022-0519
Nabil kadhim Taieh, Salman Khayoon Khudhur, Eman Abd Alhadi Fahad, Zuowan Zhou, D. Hui
{"title":"High mechanical performance of 3-aminopropyl triethoxy silane/epoxy cured in a sandwich construction of 3D carbon felts foam and woven basalt fibers","authors":"Nabil kadhim Taieh, Salman Khayoon Khudhur, Eman Abd Alhadi Fahad, Zuowan Zhou, D. Hui","doi":"10.1515/ntrev-2022-0519","DOIUrl":null,"url":null,"abstract":"Abstract Epoxy-based sandwich composites with improved economic efficiency were developed to better utilize composite components with functions such as high mechanical performance and light weight, which influenced quality for load-bearing applications. Herein, an epoxy-based sandwich composite was made by laminating woven basalt fibers (WBFs) as a face sheet on 3D carbon felt foam (3D CFs) as a core material. The cast-in-place process was used to infuse the epoxy solution within the sandwich, resulting in bicontinuous composites with outstanding mechanical characteristics and high performance. In addition, the epoxy solution was combined with a silane coupling agent to boost the composite’s toughness by enhancing the adhesion between the fibers and the epoxy. The mechanical properties of epoxy composites were also found to be much improved when WBFs were used as a face on 3D CF foam. Compared to the epoxy/3DCFs/WBFs composite sandwich to pure epoxy, the flexural and tensile strengths improved by 298.1 and 353.8%, respectively, while the impact strength rose to 135 kJ/m2. This research shows a new way to make a new process for making sandwich composites with epoxy that is cheap and strong.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0519","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Epoxy-based sandwich composites with improved economic efficiency were developed to better utilize composite components with functions such as high mechanical performance and light weight, which influenced quality for load-bearing applications. Herein, an epoxy-based sandwich composite was made by laminating woven basalt fibers (WBFs) as a face sheet on 3D carbon felt foam (3D CFs) as a core material. The cast-in-place process was used to infuse the epoxy solution within the sandwich, resulting in bicontinuous composites with outstanding mechanical characteristics and high performance. In addition, the epoxy solution was combined with a silane coupling agent to boost the composite’s toughness by enhancing the adhesion between the fibers and the epoxy. The mechanical properties of epoxy composites were also found to be much improved when WBFs were used as a face on 3D CF foam. Compared to the epoxy/3DCFs/WBFs composite sandwich to pure epoxy, the flexural and tensile strengths improved by 298.1 and 353.8%, respectively, while the impact strength rose to 135 kJ/m2. This research shows a new way to make a new process for making sandwich composites with epoxy that is cheap and strong.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-氨基丙基三乙氧基硅烷/环氧树脂在三维碳毡泡沫和编织玄武岩纤维夹层结构中固化的高机械性能
摘要为了更好地利用影响承载质量的复合材料部件的高力学性能和轻重量等功能,开发了经济高效的环氧基夹层复合材料。本文以编织玄武岩纤维(WBFs)为表层,以三维碳毡泡沫(3D CFs)为芯材,复合制备了一种环氧基夹层复合材料。采用现浇工艺将环氧树脂溶液注入夹层内,得到了具有优异力学特性和高性能的双连续复合材料。此外,环氧溶液与硅烷偶联剂结合,通过增强纤维与环氧树脂之间的附着力来提高复合材料的韧性。在三维CF泡沫材料上使用WBFs作为表面,环氧复合材料的力学性能也得到了很大的改善。与纯环氧树脂相比,环氧树脂/3DCFs/WBFs复合夹层的抗弯强度和抗拉强度分别提高了298.1和353.8%,冲击强度提高到135 kJ/m2。本研究为环氧树脂夹层复合材料的制备提供了一种廉价、坚固的新工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
期刊最新文献
Tension buckling and postbuckling of nanocomposite laminated plates with in-plane negative Poisson’s ratio Solution-processed Bi2S3/BiVO4/TiO2 ternary heterojunction photoanode with enhanced photoelectrochemical performance Performance of polycarboxylate superplasticisers in seawater-blended cement: Effect from chemical structure and nano modification Significance of gyrotactic microorganisms on the MHD tangent hyperbolic nanofluid flow across an elastic slender surface: Numerical analysis Research progress on preparation, modification, and application of phenolic aerogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1