Bayesian updates for indoor environmental quality (IEQ) acceptance model for residential buildings

IF 2.1 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Intelligent Buildings International Pub Date : 2020-09-12 DOI:10.1080/17508975.2020.1803788
T. Tsang, K. Mui, L. Wong, W. Yu
{"title":"Bayesian updates for indoor environmental quality (IEQ) acceptance model for residential buildings","authors":"T. Tsang, K. Mui, L. Wong, W. Yu","doi":"10.1080/17508975.2020.1803788","DOIUrl":null,"url":null,"abstract":"ABSTRACT An accurate indoor environmental quality (IEQ) model is essential to design and maintain a comfortable indoor environment. Due to the complexity of IEQ modelling and subjective nature of IEQ responses, there is a need to update the subjective–objective relationship of IEQ model when new information is available. In this study, a Bayesian approach for IEQ model updating is proposed to systematically relate new subjective IEQ responses towards the environment to the existing beliefs. With a selected target sample size and an acceptable error, the statistical significance of data is evaluated and incorporated into the updated IEQ model. Bayesian updating framework is able to enhance the accuracy of IEQ prediction and shall be a useful tool for managerial decision-making in maintaining a comfortable indoor environment.","PeriodicalId":45828,"journal":{"name":"Intelligent Buildings International","volume":"13 1","pages":"17 - 32"},"PeriodicalIF":2.1000,"publicationDate":"2020-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17508975.2020.1803788","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Buildings International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17508975.2020.1803788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT An accurate indoor environmental quality (IEQ) model is essential to design and maintain a comfortable indoor environment. Due to the complexity of IEQ modelling and subjective nature of IEQ responses, there is a need to update the subjective–objective relationship of IEQ model when new information is available. In this study, a Bayesian approach for IEQ model updating is proposed to systematically relate new subjective IEQ responses towards the environment to the existing beliefs. With a selected target sample size and an acceptable error, the statistical significance of data is evaluated and incorporated into the updated IEQ model. Bayesian updating framework is able to enhance the accuracy of IEQ prediction and shall be a useful tool for managerial decision-making in maintaining a comfortable indoor environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
住宅建筑室内环境质量(IEQ)验收模型的贝叶斯更新
准确的室内环境质量(IEQ)模型对于设计和保持舒适的室内环境至关重要。由于环境质量模型的复杂性和环境质量反应的主观性,当新的信息出现时,需要对环境质量模型的主客观关系进行更新。在本研究中,提出了一种用于IEQ模型更新的贝叶斯方法,以系统地将新的主观IEQ对环境的反应与现有的信念联系起来。通过选定的目标样本量和可接受的误差,评估数据的统计显著性并将其纳入更新的IEQ模型。贝叶斯更新框架能够提高IEQ预测的准确性,在保持舒适的室内环境方面将成为管理决策的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent Buildings International
Intelligent Buildings International CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
4.60
自引率
4.30%
发文量
8
期刊最新文献
Research on the optimization of the spatial structure of the rural complex based on spatial syntax–the example of Fushan village in Pingjiang County Maximizing worker potential: a comprehensive analysis of the workplace environment and personality factors that affect subjective productivity in simple tasks and creative activities Genetic algorithm-based land use optimization for smart city planning Research on the application of RAGA-PP projection model in sustainable architecture: evaluation and optimization 3D image reconstruction of architectural model based on 3D printing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1