Eduardo González-Mora, R. Poudel, M. D. Durán-García
{"title":"A practical upper-bound efficiency model for solar power plants","authors":"Eduardo González-Mora, R. Poudel, M. D. Durán-García","doi":"10.1515/jnet-2022-0080","DOIUrl":null,"url":null,"abstract":"Abstract A generalized model for the maximum work rate extractable from the Sun is developed considering a reversible and an endoreversible system to define a more practical upper-bound efficiency for the conversion of solar radiation into work and power. This model is based on a photo-thermal work extractor in communication with a high-temperature radiation reservoir and a low-temperature heat sink. Following the model, a parametric analysis of the concentration acceptance product (ξ) and thermal conductance is performed to identify the interdependence of variables for the solar exergy. The results are compared with existing models to provide a practical baseline of work and power extractable from concentrated solar power plants (CSP) technologies. Therefore, it is possible to quantify the irreversibilities of an idealized thermodynamic system operating between the Sun and the absorber (via radiative transfer) and the environment (via convective transfer).","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"48 1","pages":"331 - 344"},"PeriodicalIF":4.3000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract A generalized model for the maximum work rate extractable from the Sun is developed considering a reversible and an endoreversible system to define a more practical upper-bound efficiency for the conversion of solar radiation into work and power. This model is based on a photo-thermal work extractor in communication with a high-temperature radiation reservoir and a low-temperature heat sink. Following the model, a parametric analysis of the concentration acceptance product (ξ) and thermal conductance is performed to identify the interdependence of variables for the solar exergy. The results are compared with existing models to provide a practical baseline of work and power extractable from concentrated solar power plants (CSP) technologies. Therefore, it is possible to quantify the irreversibilities of an idealized thermodynamic system operating between the Sun and the absorber (via radiative transfer) and the environment (via convective transfer).
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.