The responses of Cannabis sativa to environmental stress: a balancing act

IF 1 4区 生物学 Q3 PLANT SCIENCES Botany Pub Date : 2023-07-11 DOI:10.1139/cjb-2023-0056
Josephine E Payment, Marina Cvetkovska
{"title":"The responses of Cannabis sativa to environmental stress: a balancing act","authors":"Josephine E Payment, Marina Cvetkovska","doi":"10.1139/cjb-2023-0056","DOIUrl":null,"url":null,"abstract":"Cannabis sativa is one of the oldest cultivated crops, used for its fiber and medicinal properties. The cannabis plant synthesizes a myriad of secondary metabolites, but the most valuable products from a medical and commercial standpoint are cannabinoids. Despite significant advances in elucidating the biochemistry and genetics that govern cannabinoid accumulation, we still do not have conclusive evidence for the role of these secondary metabolites in the physiology of C. sativa. In line with known functions of other secondary metabolites, the protective functions of cannabinoids against temperature stress, poor micronutrient soil content, drought, UV-B radiation, and as anti-microbial agents have been suggested, but are yet to be conclusively demonstrated. Recent research suggests that the environment has a major effect on cannabis growth and productivity, but the relationship between stress, cannabinoid accumulation, and plant health is complex. Here, we summarize the current insights on how abiotic and biotic stress affect C. sativa biology. We also examine the available evidence to support the hypothesis for the protective function of cannabinoids against environmental stressors. Maintaining optimal growth and high cannabinoid synthesis is a balancing act, one that can only be achieved by better understanding of the effects on the environment on the cannabis plant.","PeriodicalId":9092,"journal":{"name":"Botany","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjb-2023-0056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cannabis sativa is one of the oldest cultivated crops, used for its fiber and medicinal properties. The cannabis plant synthesizes a myriad of secondary metabolites, but the most valuable products from a medical and commercial standpoint are cannabinoids. Despite significant advances in elucidating the biochemistry and genetics that govern cannabinoid accumulation, we still do not have conclusive evidence for the role of these secondary metabolites in the physiology of C. sativa. In line with known functions of other secondary metabolites, the protective functions of cannabinoids against temperature stress, poor micronutrient soil content, drought, UV-B radiation, and as anti-microbial agents have been suggested, but are yet to be conclusively demonstrated. Recent research suggests that the environment has a major effect on cannabis growth and productivity, but the relationship between stress, cannabinoid accumulation, and plant health is complex. Here, we summarize the current insights on how abiotic and biotic stress affect C. sativa biology. We also examine the available evidence to support the hypothesis for the protective function of cannabinoids against environmental stressors. Maintaining optimal growth and high cannabinoid synthesis is a balancing act, one that can only be achieved by better understanding of the effects on the environment on the cannabis plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大麻对环境压力的反应:一种平衡行为
大麻是最古老的栽培作物之一,具有纤维和药用特性。大麻植物合成了无数的次级代谢产物,但从医学和商业角度来看,最有价值的产品是大麻素。尽管在阐明控制大麻素积累的生物化学和遗传学方面取得了重大进展,但我们仍然没有确凿的证据表明这些次级代谢产物在C.sativa生理学中的作用。与其他次生代谢产物的已知功能一致,大麻素对温度胁迫、微量营养素土壤含量低、干旱、UV-B辐射和抗微生物剂的保护作用已被提出,但尚未得到最终证明。最近的研究表明,环境对大麻的生长和生产力有重大影响,但压力、大麻素积累和植物健康之间的关系很复杂。在这里,我们总结了目前关于非生物和生物胁迫如何影响苜蓿生物学的见解。我们还研究了支持大麻素对环境压力源的保护作用假说的现有证据。保持最佳生长和高大麻素合成是一种平衡行为,只有更好地了解大麻植物对环境的影响才能实现这一平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Botany
Botany 生物-植物科学
CiteScore
2.20
自引率
9.10%
发文量
48
期刊介绍: Botany features comprehensive research articles and notes in all segments of plant sciences, including cell and molecular biology, ecology, mycology and plant-microbe interactions, phycology, physiology and biochemistry, structure and development, genetics, systematics, and phytogeography. It also publishes methods, commentary, and review articles on topics of current interest, contributed by internationally recognized scientists.
期刊最新文献
Four new species of Albomagister (Agaricales) from eastern North America The Meadoway: native meadow creation in underutilized transmission line corridors Do nurse plants and cattle exclusion help restore Parlatore’s Podocarp forest? Observations on the curvature of Physcomitrium patens (Hedw.) Mitt. and Funaria hygrometrica (Hedw.) caulonemal filaments 基于BP神经网络算法的延胡索农药减施增效技术研究
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1