Approximate Invariance Testing in Diagnostic Classification Models in the Presence of Attribute Hierarchies: A Bayesian Network Approach

Psych Pub Date : 2023-07-13 DOI:10.3390/psych5030045
Alfonso J. Martinez, Jonathan Templin
{"title":"Approximate Invariance Testing in Diagnostic Classification Models in the Presence of Attribute Hierarchies: A Bayesian Network Approach","authors":"Alfonso J. Martinez, Jonathan Templin","doi":"10.3390/psych5030045","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the process of invariance testing in diagnostic classification models in the presence of attribute hierarchies via an extension of the log-linear cognitive diagnosis model (LCDM). This extension allows researchers to test for measurement (item) invariance as well as attribute (structural) invariance simultaneously in a single analysis. The structural model of the LCDM was parameterized as a Bayesian network, which allows attribute hierarchies to be modeled and tested for attribute invariance via a series of latent regression models. We illustrate the steps for carrying out the invariance analyses through an in-depth case study with an empirical dataset and provide JAGS code for carrying out the analysis within the Bayesian framework. The analysis revealed that a subset of the items exhibit partial invariance, and evidence of full invariance was found at the structural level.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5030045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper demonstrates the process of invariance testing in diagnostic classification models in the presence of attribute hierarchies via an extension of the log-linear cognitive diagnosis model (LCDM). This extension allows researchers to test for measurement (item) invariance as well as attribute (structural) invariance simultaneously in a single analysis. The structural model of the LCDM was parameterized as a Bayesian network, which allows attribute hierarchies to be modeled and tested for attribute invariance via a series of latent regression models. We illustrate the steps for carrying out the invariance analyses through an in-depth case study with an empirical dataset and provide JAGS code for carrying out the analysis within the Bayesian framework. The analysis revealed that a subset of the items exhibit partial invariance, and evidence of full invariance was found at the structural level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在属性层次的诊断分类模型的近似不变性检验:一种贝叶斯网络方法
本文通过对数线性认知诊断模型(LCDM)的扩展,证明了在存在属性层次的情况下,诊断分类模型中的不变性测试过程。这种扩展使研究人员能够在单个分析中同时测试测量(项目)不变性和属性(结构)不变性。LCDM的结构模型被参数化为贝叶斯网络,该网络允许通过一系列潜在回归模型对属性层次结构进行建模和测试属性不变性。我们通过对经验数据集的深入案例研究说明了进行不变性分析的步骤,并提供了在贝叶斯框架内进行分析的JAGS代码。分析表明,项目的一个子集表现出部分不变性,并且在结构层面上发现了完全不变性的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1