Local Resistances of Gas–Liquid Two-Phase Flows in Vertical L-Shaped and Z-Shaped Pipes

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2022-11-28 DOI:10.1155/2022/8251430
Bing Wang, Shanqun Chen, Bin Liao
{"title":"Local Resistances of Gas–Liquid Two-Phase Flows in Vertical L-Shaped and Z-Shaped Pipes","authors":"Bing Wang, Shanqun Chen, Bin Liao","doi":"10.1155/2022/8251430","DOIUrl":null,"url":null,"abstract":"In this paper, a systematic numerical study of the local resistance coefficients of vertical L-shaped and Z-shaped pipes for gas‒liquid two-phase flows under vertical conditions was carried out using a realizable k-ε turbulence model combined with a mixture model in Fluent software. Specifically, the influence of the Reynolds number Rel, the gas-phase volume rate α, the radius–diameter ratio R/D, the height–diameter ratio H/D, and the two-phase flow direction on the local resistance coefficient ξ were discussed in detail. ξ of the vertical Z-shaped pipe decreases with increasing Rel, while ξ of the vertical L-shaped pipe does not change significantly. In a specific range, ξ of vertical L-shaped and Z-shaped pipes increases with increasing α and decreases with increasing R/D. In Z-shaped pipes, under the upward flow condition, ξ increases with increasing H/D, and under the downward flow and horizontal flow conditions, ξ first decreases and then increases with increasing H/D. Overall, upward and downward flow conditions have a larger ξ than the horizontal flow condition. When H/D is larger than 14, ξ tends to be stable under all three flow conditions. Finally, the relationship equations between ξ and Rel, α, R/D, and H/D were fitted, which agreed with the numerical results.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8251430","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a systematic numerical study of the local resistance coefficients of vertical L-shaped and Z-shaped pipes for gas‒liquid two-phase flows under vertical conditions was carried out using a realizable k-ε turbulence model combined with a mixture model in Fluent software. Specifically, the influence of the Reynolds number Rel, the gas-phase volume rate α, the radius–diameter ratio R/D, the height–diameter ratio H/D, and the two-phase flow direction on the local resistance coefficient ξ were discussed in detail. ξ of the vertical Z-shaped pipe decreases with increasing Rel, while ξ of the vertical L-shaped pipe does not change significantly. In a specific range, ξ of vertical L-shaped and Z-shaped pipes increases with increasing α and decreases with increasing R/D. In Z-shaped pipes, under the upward flow condition, ξ increases with increasing H/D, and under the downward flow and horizontal flow conditions, ξ first decreases and then increases with increasing H/D. Overall, upward and downward flow conditions have a larger ξ than the horizontal flow condition. When H/D is larger than 14, ξ tends to be stable under all three flow conditions. Finally, the relationship equations between ξ and Rel, α, R/D, and H/D were fitted, which agreed with the numerical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直L形和Z形管道中气液两相流的局部阻力
本文利用Fluent软件中可实现的k-ε湍流模型和混合模型,对垂直条件下气液两相流垂直L形和Z形管道的局部阻力系数进行了系统的数值研究。具体而言,详细讨论了雷诺数Rel、气相体积比α、半径直径比R/D、高度直径比H/D和两相流方向对局部阻力系数ξ的影响。垂直Z形管的ξ随着Rel的增加而减小,而垂直L形管的ζ没有显著变化。在特定范围内,垂直L形和Z形管道的ξ随α的增加而增加,随R/D的增加而减小。在Z形管中,在向上流动的情况下,ξ随着H/D的增加而增加,在向下流动和水平流动的情况中,ξ先减小后增大。总体而言,向上和向下流动条件的ξ大于水平流动条件。当H/D大于14时,ξ在所有三种流动条件下都趋于稳定。最后,拟合了ξ与Rel、α、R/D和H/D之间的关系方程,与数值结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1