Estimating the probabilities of misclassification using CV when the dimension and the sample sizes are large

IF 0.5 4区 数学 Q3 MATHEMATICS Hiroshima Mathematical Journal Pub Date : 2018-07-19 DOI:10.32917/HMJ/1544238034
Tomoyuki Nakagawa
{"title":"Estimating the probabilities of misclassification using CV when the dimension and the sample sizes are large","authors":"Tomoyuki Nakagawa","doi":"10.32917/HMJ/1544238034","DOIUrl":null,"url":null,"abstract":"In this paper, we study about estimating the probabilities of misclassification in the high-dimensional data. In many cases, the cross-validation (CV) is often used for estimations of the probabilities of misclassification. CV provides a nearly unbiased estimate, using the original data when the sample sizes are large. On the other hand, the properties of CV are not well-known when the dimension is large as compared to the sample sizes. Therefore, we investigate asymptotic properties of CV when the dimension and the sample sizes tend to be large. Furthermore, we suggest the three methods for correcting the bias by using CV which is usable in the high-dimensional data. We show performances of the estimators in the simulation studies.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1544238034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study about estimating the probabilities of misclassification in the high-dimensional data. In many cases, the cross-validation (CV) is often used for estimations of the probabilities of misclassification. CV provides a nearly unbiased estimate, using the original data when the sample sizes are large. On the other hand, the properties of CV are not well-known when the dimension is large as compared to the sample sizes. Therefore, we investigate asymptotic properties of CV when the dimension and the sample sizes tend to be large. Furthermore, we suggest the three methods for correcting the bias by using CV which is usable in the high-dimensional data. We show performances of the estimators in the simulation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当维度和样本量较大时,使用CV估计误分类概率
本文研究了高维数据中误分类概率的估计问题。在许多情况下,交叉验证(CV)通常用于估计误分类的概率。CV提供了一个几乎无偏的估计,当样本量很大时使用原始数据。另一方面,与样本量相比,当维度较大时,CV的性质不为人所知。因此,我们研究了维数和样本量趋于较大时CV的渐近性质。在此基础上,我们提出了三种利用高维数据中可用的CV校正偏差的方法。我们在仿真研究中展示了估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
期刊最新文献
Hartogs’ analyticity theorem for C2-mappings and maximum principle for q-convex functions On a class of fully nonlinear elliptic equations containing gradient terms on compact almost Hermitian manifolds An ℓ2,0-norm constrained matrix optimization via extended discrete first-order algorithms Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces On meromorphic functions sharing three one-point or two-point sets CM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1