Proteome-wide comparison of tertiary protein structures reveals molecular mimicry in Plasmodium-human interactions.

Frontiers in parasitology Pub Date : 2023-06-15 eCollection Date: 2023-01-01 DOI:10.3389/fpara.2023.1162697
Viraj Muthye, James D Wasmuth
{"title":"Proteome-wide comparison of tertiary protein structures reveals molecular mimicry in <i>Plasmodium</i>-human interactions.","authors":"Viraj Muthye, James D Wasmuth","doi":"10.3389/fpara.2023.1162697","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Molecular mimicry is a strategy used by parasites to evade the host's immune system and facilitate transmission to a new host. To date, high-throughput examples of molecular mimicry have been limited to comparing protein sequences. However, recent advances in the prediction of tertiary structural models, led by Deepmind's AlphaFold, enable the comparison of thousands of proteins from parasites and their hosts at the structural level, allowing for the identification of more mimics. Here, we present the first proteome-level search for tertiary structure similarity between proteins from <i>Plasmodium falciparum</i>, a malaria-causing parasite, and humans.</p><p><strong>Methods: </strong>We assembled a database of experimentally-characterized protein tertiary structures (from the Protein Data Bank) and AlphaFold-generated protein tertiary structures from <i>P. falciparum</i>, human, and 15 negative control species, <i>i.e</i>., species not infected by <i>P. falciparum</i>. We aligned human and control structures to the parasite structures using Foldseek.</p><p><strong>Results: </strong>We identified molecular mimicry in three proteins that have been previously proposed as mediators of <i>Plasmodium</i>-human interactions. By extending this approach to all <i>P. falciparum</i> proteins, we identified an additional 41 potential mimics that are supported by additional experimental data.</p><p><strong>Discussion: </strong>Our findings demonstrate a valuable application of AlphaFold-derived tertiary structural models, and we discuss key considerations for its effective use in other host-parasite systems.</p>","PeriodicalId":73098,"journal":{"name":"Frontiers in parasitology","volume":" ","pages":"1162697"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in parasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpara.2023.1162697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Molecular mimicry is a strategy used by parasites to evade the host's immune system and facilitate transmission to a new host. To date, high-throughput examples of molecular mimicry have been limited to comparing protein sequences. However, recent advances in the prediction of tertiary structural models, led by Deepmind's AlphaFold, enable the comparison of thousands of proteins from parasites and their hosts at the structural level, allowing for the identification of more mimics. Here, we present the first proteome-level search for tertiary structure similarity between proteins from Plasmodium falciparum, a malaria-causing parasite, and humans.

Methods: We assembled a database of experimentally-characterized protein tertiary structures (from the Protein Data Bank) and AlphaFold-generated protein tertiary structures from P. falciparum, human, and 15 negative control species, i.e., species not infected by P. falciparum. We aligned human and control structures to the parasite structures using Foldseek.

Results: We identified molecular mimicry in three proteins that have been previously proposed as mediators of Plasmodium-human interactions. By extending this approach to all P. falciparum proteins, we identified an additional 41 potential mimics that are supported by additional experimental data.

Discussion: Our findings demonstrate a valuable application of AlphaFold-derived tertiary structural models, and we discuss key considerations for its effective use in other host-parasite systems.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三级蛋白结构的蛋白质组比较揭示了疟原虫与人类相互作用中的分子模仿
分子模仿是寄生虫逃避宿主免疫系统并传播给新宿主的一种策略。到目前为止,高通量分子模拟的例子仅限于比较蛋白质序列。然而,最近在预测三级结构模型方面的进展,由Deepmind的AlphaFold领导,可以在结构水平上比较来自寄生虫和宿主的数千种蛋白质,从而识别更多的模仿物。在这里,我们提出了第一个蛋白质组水平的搜索,从恶性疟原虫,一种引起疟疾的寄生虫,和人类之间的蛋白质三级结构的相似性。方法收集了恶性疟原虫、人类和15种阴性对照物种(即未感染恶性疟原虫的物种)经实验表征的蛋白三级结构数据库(来自protein Data Bank)和alphafold生成的蛋白三级结构数据库。我们使用Foldseek将人类和控制结构与寄生虫结构对齐。结果我们鉴定了三种蛋白质的分子拟态,这些蛋白质先前被认为是疟原虫与人相互作用的介质。通过将这种方法扩展到所有恶性疟原虫蛋白,我们确定了另外41种潜在的模拟物,这些模拟物得到了额外实验数据的支持。我们的发现证明了alphafold衍生的三级结构模型的有价值的应用,我们讨论了其在其他宿主-寄生虫系统中有效使用的关键考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic diversity and genotyping of Echinococcus multilocularis: a minireview. Assessing the performance of TRX and DUF148 antigens for detection of prepatent Guinea worm (Dracunculus medinensis) infection in dogs. Assessing the diagnostic value of qPCR for Trichuris trichiura: sub-analysis of a multi-country clinical trial to determine the efficacy of albendazole compared to an albendazole-ivermectin fixed dose combination. Genetic polymorphism of Plasmodium falciparum circumsporozoite protein in Kigali, Rwanda. Correction: In vitro co-culture model of Trichomonas vaginalis, Candida albicans, and Lactobacillus crispatus: a system for assessing antimicrobial activity and microorganism interactions in vaginitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1