Forecasting the Estonian rate of inflation using factor models

IF 1.2 3区 经济学 Q3 ECONOMICS Baltic Journal of Economics Pub Date : 2017-07-03 DOI:10.1080/1406099X.2017.1371976
Nicolas Reigl
{"title":"Forecasting the Estonian rate of inflation using factor models","authors":"Nicolas Reigl","doi":"10.1080/1406099X.2017.1371976","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.","PeriodicalId":43756,"journal":{"name":"Baltic Journal of Economics","volume":"17 1","pages":"152 - 189"},"PeriodicalIF":1.2000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1406099X.2017.1371976","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/1406099X.2017.1371976","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses show that certain factor-augmented VAR models improve upon a simple univariate autoregressive model but the forecasting gains are small and not systematic. Models with a small number of factors extracted from a large dataset are best suited for forecasting headline inflation. The results also show that models with a larger number of factors extracted from a small dataset outperform the benchmark model in the forecast of Estonian headline and, especially, core inflation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用因子模型预测爱沙尼亚的通货膨胀率
本文提出了预测的标题和核心通货膨胀在爱沙尼亚与递归伪样本外框架因子模型。这些因素是用主成分分析构建的,然后纳入向量自回归(VAR)预测模型。分析表明,某些因子增广VAR模型对简单的单变量自回归模型进行了改进,但预测收益较小且不具有系统性。从大型数据集中提取少量因素的模型最适合预测总体通胀。结果还表明,从小型数据集中提取的大量因素的模型在预测爱沙尼亚标题,特别是核心通货膨胀方面优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
7
审稿时长
30 weeks
期刊最新文献
Economic upgrading of Central and Eastern European economies through global value chain participation and foreign direct investment Are Poles stuck in overeducation? Individual dynamics of educational mismatch in Poland Choosing the European fiscal rule A long-run perspective on Latvian regional gross domestic product inequality, 1925–2016 The communication reaction function of the European Central Bank. An analysis using topic modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1