A doubt–confirmation-based visual detection method for foreign object debris aided by assembly models

IF 0.8 4区 工程技术 Q4 ENGINEERING, MECHANICAL Transactions of The Canadian Society for Mechanical Engineering Pub Date : 2023-07-11 DOI:10.1139/tcsme-2022-0143
Feifei Kong, Delong Zhao, Fuzhou Du
{"title":"A doubt–confirmation-based visual detection method for foreign object debris aided by assembly models","authors":"Feifei Kong, Delong Zhao, Fuzhou Du","doi":"10.1139/tcsme-2022-0143","DOIUrl":null,"url":null,"abstract":"Foreign object debris (FOD) impacts significantly on the quality control during product assembly because it usually causes product failure. The vision-based method as a nondestructive and efficient technology has become an important approach to FOD detection. However, it faces two important challenges: (1) inexhaustible types (almost any object can become FOD) and (2) unpredictable locations (FOD can appear almost anywhere on surface of a product). Therefore, this paper proposes an FOD visual detection method based on doubt–confirmation strategy and aided by assembly models. Firstly, a coarse-to-fine method is designed for feature extraction and registration to align the test image with the reference image. Then, to solve the unpredictable location problem, different types of suspected FOD are extracted from the test image by a combined method of supervision and nonsupervision. Finally, to solve the inexhaustible type problem, an image comparison method based on a Histogram of Line Direction Angle is proposed, and re-recognition rules of suspected FOD established to complete the final discrimination. Experiments are conducted on a product with complex shape, and the results demonstrate the effectiveness and efficiency of our approach.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2022-0143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Foreign object debris (FOD) impacts significantly on the quality control during product assembly because it usually causes product failure. The vision-based method as a nondestructive and efficient technology has become an important approach to FOD detection. However, it faces two important challenges: (1) inexhaustible types (almost any object can become FOD) and (2) unpredictable locations (FOD can appear almost anywhere on surface of a product). Therefore, this paper proposes an FOD visual detection method based on doubt–confirmation strategy and aided by assembly models. Firstly, a coarse-to-fine method is designed for feature extraction and registration to align the test image with the reference image. Then, to solve the unpredictable location problem, different types of suspected FOD are extracted from the test image by a combined method of supervision and nonsupervision. Finally, to solve the inexhaustible type problem, an image comparison method based on a Histogram of Line Direction Angle is proposed, and re-recognition rules of suspected FOD established to complete the final discrimination. Experiments are conducted on a product with complex shape, and the results demonstrate the effectiveness and efficiency of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
装配模型辅助下基于双确认的异物碎片视觉检测方法
异物碎片(FOD)对产品装配过程中的质量控制有着重要的影响,因为它通常会导致产品失效。基于视觉的方法作为一种无损、高效的检测技术,已成为残障检测的重要手段。然而,它面临着两个重要的挑战:(1)取之不尽的类型(几乎任何物体都可以成为FOD)和(2)不可预测的位置(FOD几乎可以出现在产品表面的任何地方)。为此,本文提出了一种基于怀疑确认策略和装配模型辅助的FOD视觉检测方法。首先,设计了一种从粗到精的特征提取和配准方法,将测试图像与参考图像对齐;然后,采用监督与非监督相结合的方法,从测试图像中提取不同类型的疑似FOD,解决不可预测的定位问题。最后,针对类型不竭的问题,提出了一种基于直线方向角直方图的图像比较方法,并建立了疑似FOD的重新识别规则,完成了最终的识别。在一个复杂形状的产品上进行了实验,结果证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
5 months
期刊介绍: Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.
期刊最新文献
Novel design and motion analysis of an omni-tread snake-like robot for narrow space inspection Dynamic Characteristics of electromechanical coupling of body-suspended drive system for high-speed trains under wheel polygonal wear Closed-Loop Control of Surface Preparation for Metallizing Fiber-Reinforced Polymer Composites Study on the temperature dissipation performance of brake pads with different surface patterns Experimental Evaluation of a Small-Sized Continuum Robot for Grasping Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1