Coexistence and Adsorption Properties of Heavy Metals by Polypropylene Microplastics

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED Adsorption Science & Technology Pub Date : 2021-10-14 DOI:10.1155/2021/4938749
T. Fan, Jie Zhao, Yingxiang Chen, Miao Wang, Xingming Wang, Shun Wang, Xiaoyang Chen, Akang Lu, Shijiao Zha
{"title":"Coexistence and Adsorption Properties of Heavy Metals by Polypropylene Microplastics","authors":"T. Fan, Jie Zhao, Yingxiang Chen, Miao Wang, Xingming Wang, Shun Wang, Xiaoyang Chen, Akang Lu, Shijiao Zha","doi":"10.1155/2021/4938749","DOIUrl":null,"url":null,"abstract":"Plastic particles with a diameter of 5 mm or less are called microplastics. Microplastics are one of the primary sources of pollution in the environment. It has been proven that microplastics are also carriers of heavy metals, but there are few studies on their adsorption mechanism. In this study, the adsorption of Pb, Cu, Cd, and Zn by polypropylene (PP) microplastics was analyzed and discussed. The morphology of PP was observed by scanning electron microscopy (SEM), the surface elemental composition of PP was determined by X-ray photoelectron spectroscopy (XPS), and the functional groups of PP were analyzed by Fourier transform infrared spectroscopy (FTIR). The results showed that the adsorption behavior of microplastics to different heavy metals could be balanced in 32 hours. Kinetics experiments showed that the adsorption process could be fitted well by a two-stage dynamic model, and the adsorption of Pb and Cu by PP is greater than that of Cd and Zn. The Freundlich model has the best fitting effect on Pb for the adsorption isothermal results. The Langmuir model showed that the process is favorable for adsorption. The adsorption of mixed heavy metals by microplastics showed that when the concentration of the mixed adsorption mass was low, the presence of a coexistence system promoted the adsorption of Zn and Cu by microplastics. With an increasing concentration, the adsorption of 4 heavy metals by microplastics is inhibited.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/4938749","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 16

Abstract

Plastic particles with a diameter of 5 mm or less are called microplastics. Microplastics are one of the primary sources of pollution in the environment. It has been proven that microplastics are also carriers of heavy metals, but there are few studies on their adsorption mechanism. In this study, the adsorption of Pb, Cu, Cd, and Zn by polypropylene (PP) microplastics was analyzed and discussed. The morphology of PP was observed by scanning electron microscopy (SEM), the surface elemental composition of PP was determined by X-ray photoelectron spectroscopy (XPS), and the functional groups of PP were analyzed by Fourier transform infrared spectroscopy (FTIR). The results showed that the adsorption behavior of microplastics to different heavy metals could be balanced in 32 hours. Kinetics experiments showed that the adsorption process could be fitted well by a two-stage dynamic model, and the adsorption of Pb and Cu by PP is greater than that of Cd and Zn. The Freundlich model has the best fitting effect on Pb for the adsorption isothermal results. The Langmuir model showed that the process is favorable for adsorption. The adsorption of mixed heavy metals by microplastics showed that when the concentration of the mixed adsorption mass was low, the presence of a coexistence system promoted the adsorption of Zn and Cu by microplastics. With an increasing concentration, the adsorption of 4 heavy metals by microplastics is inhibited.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚丙烯微塑料对重金属的吸附及共存特性研究
直径为5的塑料颗粒 mm或更小的称为微塑料。微塑料是环境污染的主要来源之一。已经证明微塑料也是重金属的载体,但对其吸附机理的研究很少。在本研究中,分析和讨论了聚丙烯(PP)微塑料对Pb、Cu、Cd和Zn的吸附。用扫描电子显微镜(SEM)观察了聚丙烯的形貌,用X射线光电子能谱(XPS)测定了聚丙烯的表面元素组成,并用傅立叶变换红外光谱(FTIR)分析了聚丙烯的官能团。结果表明,微塑料对不同重金属的吸附行为可以在32小时内达到平衡。动力学实验表明,两阶段动力学模型可以很好地拟合吸附过程,PP对Pb和Cu的吸附大于对Cd和Zn的吸附。Freundlich模型对Pb的吸附等温结果拟合效果最好。Langmuir模型表明,该过程有利于吸附。微塑料对混合重金属的吸附表明,当混合吸附质量浓度较低时,共存体系的存在促进了微塑料对Zn和Cu的吸附。随着浓度的增加,微塑料对4种重金属的吸附受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
期刊最新文献
Partial Purification of Anthocyanins (Brassica oleracea var. Rubra) from Purple Cabbage Using Natural and Modified Clays as Adsorbent Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite Dual Role of Fe2+ in the Galena Flotation and Influence on Selective Separation Investigation of the Zeta Adsorption Model and Gas-Solid Adsorption Phase Transition Mechanism Using Statistical Mechanics at Gas-Solid Interfaces Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1