Estimating extreme monthly rainfall for Spain using non-stationary techniques

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES Hydrological Sciences Journal-Journal Des Sciences Hydrologiques Pub Date : 2023-05-04 DOI:10.1080/02626667.2023.2193294
Diego Urrea Méndez, Manuel del Jesus
{"title":"Estimating extreme monthly rainfall for Spain using non-stationary techniques","authors":"Diego Urrea Méndez, Manuel del Jesus","doi":"10.1080/02626667.2023.2193294","DOIUrl":null,"url":null,"abstract":"ABSTRACT In hydrology, extreme value analysis is normally applied at stationary yearly maxima. However, climate variability can bias the estimation of extremes by partially invalidating the stationary assumption. Extreme value analysis for sub-yearly data may depart from stationarity (since maxima from one month may not be exchangeable with maxima from another) in terms of requiring to include it in the analysis. Here, we analyse the non-stationary structure of extreme monthly rainfall in Spain using two approaches: a parametric approach and an approach based on autoregressive time series models. Our analysis considers seasonality, climate variability and long-term trends for both approaches, and it compares both including their goodness of fit and complexity. The approach uses maximum likelihood estimation and Bayesian techniques. Our results show that autoregressive models outperform parametric models, providing a more accurate representation of extreme events when extrapolating outside of the period of fit.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2193294","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In hydrology, extreme value analysis is normally applied at stationary yearly maxima. However, climate variability can bias the estimation of extremes by partially invalidating the stationary assumption. Extreme value analysis for sub-yearly data may depart from stationarity (since maxima from one month may not be exchangeable with maxima from another) in terms of requiring to include it in the analysis. Here, we analyse the non-stationary structure of extreme monthly rainfall in Spain using two approaches: a parametric approach and an approach based on autoregressive time series models. Our analysis considers seasonality, climate variability and long-term trends for both approaches, and it compares both including their goodness of fit and complexity. The approach uses maximum likelihood estimation and Bayesian techniques. Our results show that autoregressive models outperform parametric models, providing a more accurate representation of extreme events when extrapolating outside of the period of fit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非平稳技术估计西班牙极端月降雨量
在水文学中,极值分析通常应用于固定的年最大值。然而,气候变率可以通过部分地使平稳假设失效而使极端值的估计产生偏差。分年数据的极值分析可能会偏离平稳性(因为一个月的最大值可能无法与另一个月的最大值互换),因为需要将其纳入分析。在这里,我们使用两种方法分析了西班牙极端月降雨量的非平稳结构:参数方法和基于自回归时间序列模型的方法。我们的分析考虑了两种方法的季节性、气候变化和长期趋势,并比较了两种方法的拟合优度和复杂性。该方法使用最大似然估计和贝叶斯技术。我们的研究结果表明,自回归模型优于参数模型,当外推到拟合周期之外时,可以更准确地表示极端事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
期刊最新文献
Potential assessment of calibration approaches using the SWAT hydrological model for streamflow and sediment yield for a large-scale catchment Explaining the groundwater salinity of hard-rock aquifers in semi-arid hinterlands using a multidisciplinary approach An assessment of small island hydrological research activity conducted in the Oceania region Spatiotemporal river–aquifer interactions of a large tropical dryland river with high anthropic intervention A priori selection of hydrological model structures in modular modelling frameworks: application to Great Britain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1