Modelling forest species using LiDar-derived metrics of forest canopy gaps

IF 0.3 Q4 REMOTE SENSING South African Journal of Geomatics Pub Date : 2020-02-27 DOI:10.4314/sajg.v9i1.3
L. Lombard, R. Ismail, Nitesh K. Poona
{"title":"Modelling forest species using LiDar-derived metrics of forest canopy gaps","authors":"L. Lombard, R. Ismail, Nitesh K. Poona","doi":"10.4314/sajg.v9i1.3","DOIUrl":null,"url":null,"abstract":"LiDAR intensity and texture features have reported high accuracies for discriminating forest species, particularly with the utility of the random forest (RF) algorithm. To date, limited studies has utilized LiDAR-derived forest gap information to assist in forest species discrimination. In this study, LiDAR intensity and texture features were extracted from forest canopy gaps to discriminate Eucalyptus grandis and Eucalyptus dunnii within a forest plantation. Additionally, LiDAR intensity and texture information was extracted for both canopy gaps and forest canopy and utilized for species discrimination. Using LiDAR intensity and texture information extracted for both canopy gap and forest canopy, resulted in a model accuracy of 94.74% (KHAT = 0.88). Using only canopy gap information, the RF model obtained an overall accuracy of 90.91% (KHAT = 0.81). The results highlight the potential for using canopy gap information for commercial species discrimination and mapping.","PeriodicalId":43854,"journal":{"name":"South African Journal of Geomatics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sajg.v9i1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

LiDAR intensity and texture features have reported high accuracies for discriminating forest species, particularly with the utility of the random forest (RF) algorithm. To date, limited studies has utilized LiDAR-derived forest gap information to assist in forest species discrimination. In this study, LiDAR intensity and texture features were extracted from forest canopy gaps to discriminate Eucalyptus grandis and Eucalyptus dunnii within a forest plantation. Additionally, LiDAR intensity and texture information was extracted for both canopy gaps and forest canopy and utilized for species discrimination. Using LiDAR intensity and texture information extracted for both canopy gap and forest canopy, resulted in a model accuracy of 94.74% (KHAT = 0.88). Using only canopy gap information, the RF model obtained an overall accuracy of 90.91% (KHAT = 0.81). The results highlight the potential for using canopy gap information for commercial species discrimination and mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用激光雷达衍生的森林冠层间隙度量对森林物种进行建模
据报道,激光雷达强度和纹理特征在区分森林物种方面具有很高的准确性,特别是随机森林(RF)算法的应用。迄今为止,有限的研究利用激光雷达获得的森林间隙信息来协助森林物种识别。本研究通过提取林冠间隙的激光雷达强度和纹理特征,对人工林内的大桉(Eucalyptus grandis)和敦桉(Eucalyptus dunnii)进行区分。此外,还提取了林冠间隙和林冠的激光雷达强度和纹理信息,并将其用于物种识别。同时提取林冠间隙和林冠的激光雷达强度和纹理信息,模型精度为94.74% (KHAT = 0.88)。仅利用冠层间隙信息,RF模型的总体精度为90.91% (KHAT = 0.81)。研究结果强调了利用林隙信息进行商业物种识别和定位的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
82
期刊最新文献
Analysis of thermally-induced displacements of the HartRAO Lunar Laser Ranger optical tube: impact on pointing Identifying the optimal phenological period for discriminating subtropical fruit tree crops using multi-temporal Sentinel-2 data and Google Earth Engine Assessing the importance of hypsometry for catchment soil erosion: A case study of the Yanze watershed, Rwanda Classification of 3D UAS-SfM Point Clouds in the Urban Environment Investigating the efficiency and capabilities of UAVs and Convolutional Neural Networks in the field of remote sensing as a land classification tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1