Benthic habitat classification using multiscale GEOBIA on orthophoto images of Karimunjawa waters

Yahya Dwikarsa, A. Basith
{"title":"Benthic habitat classification using multiscale GEOBIA on orthophoto images of Karimunjawa waters","authors":"Yahya Dwikarsa, A. Basith","doi":"10.21924/cst.6.1.2021.332","DOIUrl":null,"url":null,"abstract":"The scale value is an important part of the segmentation stage which is part of Object-Based Image Analysis (OBIA). Selection of scale value can determine the size of the object which affects the results of classification accuracy. In addition to setting the scale value (multiscale), selection of machine learning algorithm applied to classify shallow water benthic habitat objects can also determine the success of the classification. Combination of setting scale values and classification algorithms are aimed to get optimal results by examining classification accuracies. This study uses orthophoto images processed from Unmanned Aerial Vehicle (UAV) mission intended to capture benthic habitat in Karimunjawa waters. The classification algorithms used are Support Vector Machine (SVM), Bayes, and K-Nearest Neighbors (KNN). The results of the classification of combination are then tested for accuracy based on the sample and Training Test Area (TTA) masks. The result shows that SVM algorithm with scale of 300 produces the best level of accuracy. While the lowest accuracy is achieved by using SVM algorithm with scale of 100. The result shows that the optimal scale settings in segmenting objects sequentially are 300, 200, and 100","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.6.1.2021.332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The scale value is an important part of the segmentation stage which is part of Object-Based Image Analysis (OBIA). Selection of scale value can determine the size of the object which affects the results of classification accuracy. In addition to setting the scale value (multiscale), selection of machine learning algorithm applied to classify shallow water benthic habitat objects can also determine the success of the classification. Combination of setting scale values and classification algorithms are aimed to get optimal results by examining classification accuracies. This study uses orthophoto images processed from Unmanned Aerial Vehicle (UAV) mission intended to capture benthic habitat in Karimunjawa waters. The classification algorithms used are Support Vector Machine (SVM), Bayes, and K-Nearest Neighbors (KNN). The results of the classification of combination are then tested for accuracy based on the sample and Training Test Area (TTA) masks. The result shows that SVM algorithm with scale of 300 produces the best level of accuracy. While the lowest accuracy is achieved by using SVM algorithm with scale of 100. The result shows that the optimal scale settings in segmenting objects sequentially are 300, 200, and 100
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Karimunjawa水域正射影像的多尺度GEOBIA底栖生物栖息地分类
尺度值是分割阶段的重要组成部分,分割阶段是基于对象的图像分析(OBIA)的一部分。标度值的选择可以确定影响分类精度结果的对象的大小。除了设置尺度值(多尺度)外,选择机器学习算法对浅水底栖生物栖息地对象进行分类也可以决定分类的成功与否。将设置标度值和分类算法相结合,旨在通过检查分类精度来获得最佳结果。本研究使用了无人机任务处理的正射影像,旨在捕捉Karimunjawa水域的底栖生物栖息地。使用的分类算法有支持向量机(SVM)、贝叶斯和K-最近邻(KNN)。然后基于样本和训练测试区域(TTA)掩模来测试组合的分类结果的准确性。结果表明,支持向量机算法在300尺度下的精度最高。而使用尺度为100的SVM算法可以获得最低的精度。结果表明,按顺序分割对象的最佳比例设置为300、200和100
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave Development of CaCO3 novel morphology through crystal lattice modification assisted by sulfate incorporation and vibration The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1