{"title":"Research on seismic stability of reinforced concrete frame structure based on numerical simulation","authors":"Jinchao Liu","doi":"10.3233/sfc-210272","DOIUrl":null,"url":null,"abstract":"BACKGROUND: The analysis of seismic stability of structure is important in the field of engineering. OBJECTIVE: This study aims to verify the reliability of numerical simulation in seismic stability of reinforced concrete (RC) frame structure. METHODS: Based on the numerical simulation, the material constitutive model of RC frame structure was introduced and then a finite element model was established through ABAQUS to analyze its seismic stability. RESULTS: The simulation results of ABAQUS were similar to the test values, the tangent slope of the skeleton curve of the structure decreased gradually, the interstorey displacement of storey 1 was the largest, the maximum error of the interstorey displacement angle was 0.005, and the ductility coefficient was 4. CONCLUSIONS: The experimental results verify the reliability of the numerical simulation method and provide some theoretical support for its better application in the study of seismic stability.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-210272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND: The analysis of seismic stability of structure is important in the field of engineering. OBJECTIVE: This study aims to verify the reliability of numerical simulation in seismic stability of reinforced concrete (RC) frame structure. METHODS: Based on the numerical simulation, the material constitutive model of RC frame structure was introduced and then a finite element model was established through ABAQUS to analyze its seismic stability. RESULTS: The simulation results of ABAQUS were similar to the test values, the tangent slope of the skeleton curve of the structure decreased gradually, the interstorey displacement of storey 1 was the largest, the maximum error of the interstorey displacement angle was 0.005, and the ductility coefficient was 4. CONCLUSIONS: The experimental results verify the reliability of the numerical simulation method and provide some theoretical support for its better application in the study of seismic stability.
期刊介绍:
Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.