M. El-sheekh, Mohammed Y. Bedaiwy, Aya A. El-Nagar, Eman Elgammal
{"title":"Saccharification of pre-treated wheat straw via optimized enzymatic production using Aspergillus niger: Chemical analysis of lignocellulosic matrix","authors":"M. El-sheekh, Mohammed Y. Bedaiwy, Aya A. El-Nagar, Eman Elgammal","doi":"10.1080/10242422.2022.2087511","DOIUrl":null,"url":null,"abstract":"Abstract Bioconversion of lignocellulosic wastes to valuable end-products via multi-enzymatic hydrolysis is a potential low costing process for large-scale application in many industrial sectors. Thus, in this study, among thirty local fungal isolates, Aspergillus niger which gave the highest cellulase production, was identified under the accession number MZ062603 in GeneBank. Three types of pre-treatments (0.0–0.7%) acid, (0.0–2%) alkali, and (70–90 °C) hot water were applied to increase wheat straw (WS) digestibility by A. niger, and 1% NaOH treated WS was superior to the other pre-treatments (acid and hot water). During solid-state fermentation, the total cellulolytic activity of [filter-paper cellulase (FPase), carboxy-methyl cellulase (CMCase), and β- glucosidase (βGase)] increased about 2.8-fold. While reducing sugar was increased by 3.1 times. The optimum values of total cellulases activities and reducing sugar (8907.2 and 92.4 mg/gds) were obtained after 3 days of incubation at 30 °C and pH 5.2 at 75% v/w moisture using 3 days old inoculum (106 spores/mL/gds). The WS substrate which was subjected to alkali pre-treatment subsequent to fungal bioconversion was varied in its chemical composition and detailed structure compared to the raw and alkali pre-treatment ones as indicated by its chemical analysis, Scanning electron microscopy (SEM) observation, Fourier Transform Infra-red Spectroscopy (FTIR), and X-Ray Diffraction (XRD). All these analyses revealed that the lignocellulosic matrix was completely destroyed after the fungal treatment.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"41 1","pages":"309 - 321"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2087511","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Bioconversion of lignocellulosic wastes to valuable end-products via multi-enzymatic hydrolysis is a potential low costing process for large-scale application in many industrial sectors. Thus, in this study, among thirty local fungal isolates, Aspergillus niger which gave the highest cellulase production, was identified under the accession number MZ062603 in GeneBank. Three types of pre-treatments (0.0–0.7%) acid, (0.0–2%) alkali, and (70–90 °C) hot water were applied to increase wheat straw (WS) digestibility by A. niger, and 1% NaOH treated WS was superior to the other pre-treatments (acid and hot water). During solid-state fermentation, the total cellulolytic activity of [filter-paper cellulase (FPase), carboxy-methyl cellulase (CMCase), and β- glucosidase (βGase)] increased about 2.8-fold. While reducing sugar was increased by 3.1 times. The optimum values of total cellulases activities and reducing sugar (8907.2 and 92.4 mg/gds) were obtained after 3 days of incubation at 30 °C and pH 5.2 at 75% v/w moisture using 3 days old inoculum (106 spores/mL/gds). The WS substrate which was subjected to alkali pre-treatment subsequent to fungal bioconversion was varied in its chemical composition and detailed structure compared to the raw and alkali pre-treatment ones as indicated by its chemical analysis, Scanning electron microscopy (SEM) observation, Fourier Transform Infra-red Spectroscopy (FTIR), and X-Ray Diffraction (XRD). All these analyses revealed that the lignocellulosic matrix was completely destroyed after the fungal treatment.
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.