Weiguo Wang, Jongil Han, Fanglin Yang, Johnathan Steffen, Bin Liu, Zhan Zhang, A. Mehra, V. Tallapragada
{"title":"Improving the intensity forecast of Tropical Cyclones in Hurricane Analysis and Forecast System","authors":"Weiguo Wang, Jongil Han, Fanglin Yang, Johnathan Steffen, Bin Liu, Zhan Zhang, A. Mehra, V. Tallapragada","doi":"10.1175/waf-d-23-0041.1","DOIUrl":null,"url":null,"abstract":"\nA modification to the mixing length formulation in a planetary boundary-layer (PBL) scheme is introduced to improve the intensity forecast of tropical cyclones (TCs) in a basin-scale Hurricane Analysis and Forecast System (HAFS) for the real-time experiment in 2021. The 2020 basin-scale HAFS with the physics suite of the NCEP operational global forecast system performs well in terms of the reduced root mean square (RMS) errors in track and intensity except for the mean intensity bias, compared with NCEP operational hurricane models. To address the large intensity bias issue, the vertical mixing length near the surface used in the PBL scheme is increased to follow the similarity theory, consistent with that used in the surface layer scheme. Test results show that the RMS error and bias in intensity are further reduced without the degradation of the track forecast. An idealized one-dimensional TC PBL model is used to understand the model response to the modification, indicating that the radial wind is strengthened to dynamically balance the enhanced downward momentum mixing. This is also exhibited in the case study of a three-dimensional HAFS simulation, with the improved vertical distribution of the simulated wind speed in the eyewall area. Given the improvement, the modification has been implemented in one of the configurations of the first version of operational HAFS at NCEP. Finally, the adjustment of the parameterization of diffusion and mixing in TC simulations is discussed.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0041.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A modification to the mixing length formulation in a planetary boundary-layer (PBL) scheme is introduced to improve the intensity forecast of tropical cyclones (TCs) in a basin-scale Hurricane Analysis and Forecast System (HAFS) for the real-time experiment in 2021. The 2020 basin-scale HAFS with the physics suite of the NCEP operational global forecast system performs well in terms of the reduced root mean square (RMS) errors in track and intensity except for the mean intensity bias, compared with NCEP operational hurricane models. To address the large intensity bias issue, the vertical mixing length near the surface used in the PBL scheme is increased to follow the similarity theory, consistent with that used in the surface layer scheme. Test results show that the RMS error and bias in intensity are further reduced without the degradation of the track forecast. An idealized one-dimensional TC PBL model is used to understand the model response to the modification, indicating that the radial wind is strengthened to dynamically balance the enhanced downward momentum mixing. This is also exhibited in the case study of a three-dimensional HAFS simulation, with the improved vertical distribution of the simulated wind speed in the eyewall area. Given the improvement, the modification has been implemented in one of the configurations of the first version of operational HAFS at NCEP. Finally, the adjustment of the parameterization of diffusion and mixing in TC simulations is discussed.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.