Influence of Sheet Covers on Filling Behavior in Electrochemical Joining of Additively Manufactured Components

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2023-08-25 DOI:10.3390/jmmp7050157
Marco Noack, Kris Rudolph, Richard Breimann, E. Kirchner
{"title":"Influence of Sheet Covers on Filling Behavior in Electrochemical Joining of Additively Manufactured Components","authors":"Marco Noack, Kris Rudolph, Richard Breimann, E. Kirchner","doi":"10.3390/jmmp7050157","DOIUrl":null,"url":null,"abstract":"This paper focuses on the electrochemical joining of additively manufactured components using simulation-based and experimental methods. The study investigates the influence of cover screens on the filling behavior of the joining zone. Experimental methods involving additive manufacturing and electroplating are combined with simulation models to provide a realistic representation of the joining process. The results show a good agreement between the simulated and experimental findings, indicating the applicability of the simulation model. The parameter study reveals that higher cover factors result in a decrease in the excess material ratio, indicating reduced material deposition outside the joining zone. The filling time required to completely fill the joining zone is influenced by both the cover size and the opening angle of the joining zone. The optimal parameter combinations depend on whether the filling time or the excess material volume is to be minimized. Cavity formation within the joining zone was identified as a critical factor affecting the completeness of the filling. The study provides insights into the influence of cover screens on the electrochemical joining process and offers guidance for optimizing the design of the joining zone.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the electrochemical joining of additively manufactured components using simulation-based and experimental methods. The study investigates the influence of cover screens on the filling behavior of the joining zone. Experimental methods involving additive manufacturing and electroplating are combined with simulation models to provide a realistic representation of the joining process. The results show a good agreement between the simulated and experimental findings, indicating the applicability of the simulation model. The parameter study reveals that higher cover factors result in a decrease in the excess material ratio, indicating reduced material deposition outside the joining zone. The filling time required to completely fill the joining zone is influenced by both the cover size and the opening angle of the joining zone. The optimal parameter combinations depend on whether the filling time or the excess material volume is to be minimized. Cavity formation within the joining zone was identified as a critical factor affecting the completeness of the filling. The study provides insights into the influence of cover screens on the electrochemical joining process and offers guidance for optimizing the design of the joining zone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片状覆盖物对添加制造部件电化学连接填充行为的影响
本文采用仿真和实验相结合的方法对增材制造部件的电化学连接进行了研究。研究了盖板对连接区充填行为的影响。将增材制造和电镀的实验方法与仿真模型相结合,提供了连接过程的真实表征。仿真结果与实验结果吻合较好,表明了仿真模型的适用性。参数研究表明,较高的覆盖系数导致多余材料比降低,表明连接区外的材料沉积减少。完全填满连接区所需的填满时间受连接区盖板尺寸和开口角度的影响。最优的参数组合取决于是否填充时间或多余的材料体积是要最小化。在连接区形成空腔是影响充填完整性的关键因素。研究揭示了盖板对电化学连接过程的影响,为连接区优化设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Assessing the Feasibility of Fabricating Thermoplastic Laminates from Unidirectional Tapes in Open Mold Environments Vickers Hardness Mechanical Models and Thermoplastic Polymer Injection-Molded Products’ Static Friction Coefficients Phase Composition, Microstructure and Mechanical Properties of Zr57Cu15Ni10Nb5 Alloy Obtained by Selective Laser Melting In-Process Machining Distortion Prediction Method Based on Bulk Residual Stresses Estimation from Reduced Layer Removal A Combined Microscopy Study of the Microstructural Evolution of Ferritic Stainless Steel upon Deep Drawing: The Role of Alloy Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1