Evaluation of the Feynman Propagator by Means of the Quantum Hamilton-Jacobi Equation

Q1 Arts and Humanities Quanta Pub Date : 2023-04-24 DOI:10.12743/quanta.v12i1.223
M. Fusco Girard
{"title":"Evaluation of the Feynman Propagator by Means of the Quantum Hamilton-Jacobi Equation","authors":"M. Fusco Girard","doi":"10.12743/quanta.v12i1.223","DOIUrl":null,"url":null,"abstract":"It is shown that the complex phase of the Feynman propagator is a solution of the quantum Hamilton–Jacobi equation, namely, it is the quantum Hamilton's principal function (or quantum action). Therefore, the Feynman propagator can be computed either by means of the path integration, or by the way of the Hamilton–Jacobi equation. This is analogous to what happens in classical mechanics, where the Hamilton's principal function can be computed either by integrating the Lagrangian along the extremal paths, or as a solution of partial differential equation, namely the classical Hamilton–Jacobi equation. If the path is decomposed in the classical one and quantum fluctuations, the contribution of these quantum fluctuations satisfies a non-linear partial differential equation, whose coefficients depend on the classical action. When the contribution of the quantum fluctuations depend only on the time, it can be computed by means of a simple integration. The final results for the propagators in this case are equal to the Van Vleck–Pauli–Morette expressions, even though the two derivations are quite different.Quanta 2023; 12: 22–26.","PeriodicalId":37613,"journal":{"name":"Quanta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quanta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12743/quanta.v12i1.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

Abstract

It is shown that the complex phase of the Feynman propagator is a solution of the quantum Hamilton–Jacobi equation, namely, it is the quantum Hamilton's principal function (or quantum action). Therefore, the Feynman propagator can be computed either by means of the path integration, or by the way of the Hamilton–Jacobi equation. This is analogous to what happens in classical mechanics, where the Hamilton's principal function can be computed either by integrating the Lagrangian along the extremal paths, or as a solution of partial differential equation, namely the classical Hamilton–Jacobi equation. If the path is decomposed in the classical one and quantum fluctuations, the contribution of these quantum fluctuations satisfies a non-linear partial differential equation, whose coefficients depend on the classical action. When the contribution of the quantum fluctuations depend only on the time, it can be computed by means of a simple integration. The final results for the propagators in this case are equal to the Van Vleck–Pauli–Morette expressions, even though the two derivations are quite different.Quanta 2023; 12: 22–26.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用量子Hamilton-Jacobi方程评价费曼传播子
证明了费曼传播子的复相是量子Hamilton - jacobi方程的解,即它是量子Hamilton的主函数(或量子作用)。因此,费曼传播算子既可以通过路径积分计算,也可以通过哈密顿-雅可比方程计算。这类似于经典力学中发生的事情,在经典力学中,汉密尔顿的主函数可以通过沿极值路径对拉格朗日积分来计算,或者作为偏微分方程的解来计算,即经典的汉密尔顿-雅可比方程。如果将路径分解为经典路径和量子涨落,则这些量子涨落的贡献满足非线性偏微分方程,其系数依赖于经典作用。当量子涨落的贡献只依赖于时间时,它可以通过简单的积分来计算。在这种情况下,传播子的最终结果等于Van Vleck-Pauli-Morette表达式,尽管两种推导非常不同。广达2023;12: 22日至26日进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quanta
Quanta Arts and Humanities-History and Philosophy of Science
CiteScore
1.30
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊介绍: Quanta is an open access academic journal publishing original research and review articles on foundations of quantum mechanics, mathematical physics and philosophy of science.
期刊最新文献
Tunneling Probability of Quantum Wavepacket in Time-Dependent Potential Well The Enigmas of Fluctuations of the Universal Quantum Fields On Weak Values and Feynman's Blind Alley Quantum Mechanics with Real Numbers: Entanglement, Superselection Rules and Gauges Shor's Factoring Algorithm and Modular Exponentiation Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1