{"title":"Software performance for the automated identification of bird vocalisations: the case of two closely related species","authors":"J. Marchal, François Fabianek, Y. Aubry","doi":"10.1080/09524622.2021.1945952","DOIUrl":null,"url":null,"abstract":"ABSTRACT Autonomous recording units now facilitate the large collection of audio recordings. However, the analysis of large amounts of acoustic data remains a challenge. The time required for manually searching for bird vocalisations may be equivalent or greater to the duration of audio recordings. This major constraint can be significantly reduced through the use of software developed for automated identification of bird vocalisations in audio recordings. We have compared the performance of four software (CallSeeker, Kaleidoscope Pro, Raven Pro, and Song Scope) and a Convolutional Neural Network (CNN) using audio recordings containing calls of Bicknell’s Thrush and Gray-Cheeked Thrush, as well as the vocalisations of other bird species whose acoustic characteristics overlap with those of our target species. We evaluated all the software on the basis of two main criteria, their ability to detect calls and their ability to classify them correctly by species. Software performance ranged from 30 to 90% in terms of call detection (recall) and from 27 to 99% in terms of correct call classification (precision). CNNs offer a promising solution to the long-standing problem of detecting animal vocalisations in noisy soundscapes, while eliminating the tedious manual step of configuring the algorithms to maximise software performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09524622.2021.1945952","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2021.1945952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
ABSTRACT Autonomous recording units now facilitate the large collection of audio recordings. However, the analysis of large amounts of acoustic data remains a challenge. The time required for manually searching for bird vocalisations may be equivalent or greater to the duration of audio recordings. This major constraint can be significantly reduced through the use of software developed for automated identification of bird vocalisations in audio recordings. We have compared the performance of four software (CallSeeker, Kaleidoscope Pro, Raven Pro, and Song Scope) and a Convolutional Neural Network (CNN) using audio recordings containing calls of Bicknell’s Thrush and Gray-Cheeked Thrush, as well as the vocalisations of other bird species whose acoustic characteristics overlap with those of our target species. We evaluated all the software on the basis of two main criteria, their ability to detect calls and their ability to classify them correctly by species. Software performance ranged from 30 to 90% in terms of call detection (recall) and from 27 to 99% in terms of correct call classification (precision). CNNs offer a promising solution to the long-standing problem of detecting animal vocalisations in noisy soundscapes, while eliminating the tedious manual step of configuring the algorithms to maximise software performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.