THERMO—DIFFUSION AND HALL EFFECT ON RADIATING AND REACTING MHD CONVECTIVE HEAT ABSORBING FLUID PAST AN EXPONENTIALLY ACCELERATED VERTICAL POROUS PLATE WITH RAMPED TEMPERATURE

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of the Serbian Society for Computational Mechanics Pub Date : 2020-06-30 DOI:10.24874/JSSCM.2020.14.01.02
B. P. Reddy
{"title":"THERMO—DIFFUSION AND HALL EFFECT ON RADIATING AND REACTING MHD CONVECTIVE HEAT ABSORBING FLUID PAST AN EXPONENTIALLY ACCELERATED VERTICAL POROUS PLATE WITH RAMPED TEMPERATURE","authors":"B. P. Reddy","doi":"10.24874/JSSCM.2020.14.01.02","DOIUrl":null,"url":null,"abstract":"Numerical investigation is undertaken to study the effects of thermo-diffusion and Hall current on unsteady magneto-hydrodynamic convective flow of a viscous, incompressible, electrically conducting, radiating and heat absorbing fluid past an exponentially accelerated infinite vertical porous plate with ramped temperature in the presence of chemical reaction. A uniform magnetic field is applied transversely in the direction of the flow. The governing system of partial differential equations along with initial and boundary conditions is transformed to dimensionless form and then solved by employing finite element method. The impact of various flow parameters on the primary and secondary fluid velocities, fluid temperature and fluid concentration as well as shear stress, rate of heat and mass transfer at the plate are displayed through the graphs and tables. It can be observed that the temperature profiles are slower in case of ramped temperature plate than that of isothermal plate.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/JSSCM.2020.14.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Numerical investigation is undertaken to study the effects of thermo-diffusion and Hall current on unsteady magneto-hydrodynamic convective flow of a viscous, incompressible, electrically conducting, radiating and heat absorbing fluid past an exponentially accelerated infinite vertical porous plate with ramped temperature in the presence of chemical reaction. A uniform magnetic field is applied transversely in the direction of the flow. The governing system of partial differential equations along with initial and boundary conditions is transformed to dimensionless form and then solved by employing finite element method. The impact of various flow parameters on the primary and secondary fluid velocities, fluid temperature and fluid concentration as well as shear stress, rate of heat and mass transfer at the plate are displayed through the graphs and tables. It can be observed that the temperature profiles are slower in case of ramped temperature plate than that of isothermal plate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热扩散和霍尔效应对MHD对流吸热流体通过指数加速垂直多孔板辐射和反应的影响
数值研究了在化学反应存在的情况下,热扩散和霍尔电流对粘性、不可压缩、导电、辐射和吸热流体通过具有斜坡温度的指数加速无限垂直多孔板的非定常磁流体动力学对流的影响。在流动方向上横向施加均匀的磁场。将偏微分方程的控制系统以及初始条件和边界条件转换为无量纲形式,然后用有限元方法求解。各种流动参数对一次和二次流体速度、流体温度和流体浓度以及板处的剪切应力、传热率和质量传递的影响通过图表显示。可以观察到,在倾斜温度板的情况下,温度分布比等温板慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
RENORMALIZATION GROUP METHOD FOR A CLASS OF LAGRANGE MECHANICAL SYSTEMS NUMERICAL INVESTIGATION OF THE NANOFLUID NATURAL CONVECTION FLOW IN A CPU HEAT SINK USING BUONGIORNO TOW-PHASE MODEL UNSTEADY NUMERICAL INVESTIGATION OF FERROFLUID FORCED CONVECTION OVER A DOWNWARD STEP CONTAINING A ROTATING FINNED CYLINDER NUMERICAL INVESTIGATION OF SUPERSONIC FLOW SEPARATION IN THRUST-OPTIMIZED CONTOUR ROCKET NOZZLE COST-EFFECTIVENESS ANALYSIS OF IN SILICO CLINICAL TRIALS OF VASCULAR STENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1