Effects of nano-Al2O3 and PTFE fillers on tribological property of basalt fabric-reinforced epoxy composites

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS Tribology - Materials, Surfaces & Interfaces Pub Date : 2021-10-02 DOI:10.1080/17515831.2020.1854509
Y. Şahin, De Baets Patrick
{"title":"Effects of nano-Al2O3 and PTFE fillers on tribological property of basalt fabric-reinforced epoxy composites","authors":"Y. Şahin, De Baets Patrick","doi":"10.1080/17515831.2020.1854509","DOIUrl":null,"url":null,"abstract":"ABSTRACT Effects of nano-Al2O3 and PTFE fillers on tribological behaviour of basalt fabric reinforced epoxy composite (BFRC) produced with a combination of molding and mixing method were studied by Taguchi L9 design. Microstructures and worn surfaces of composites were investigated by scanning electron microscopy. Regression equations were also developed for predicting wear and coefficient of friction. The results indicated that specific wear rate increased with increasing load and decreasing speed, but friction coefficient decreased with increasing speed, PTFE addition and medium load. In addition, wear rate of nano-PTFE was lower than that of nano-Al2O3 because of its microstructure. PTFE decreased the friction about 17%. Load was effective on the wear rate while speed was dominant on the friction. Moreover, multiple fiber fractures and large numbers of debris were dominated for BFRC while fiber debondings, fiber removals and debris agglomerations were effective for Al2O3, but fiber fractures and flake types of debris were responsible for PTFE. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"15 1","pages":"258 - 277"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2020.1854509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Effects of nano-Al2O3 and PTFE fillers on tribological behaviour of basalt fabric reinforced epoxy composite (BFRC) produced with a combination of molding and mixing method were studied by Taguchi L9 design. Microstructures and worn surfaces of composites were investigated by scanning electron microscopy. Regression equations were also developed for predicting wear and coefficient of friction. The results indicated that specific wear rate increased with increasing load and decreasing speed, but friction coefficient decreased with increasing speed, PTFE addition and medium load. In addition, wear rate of nano-PTFE was lower than that of nano-Al2O3 because of its microstructure. PTFE decreased the friction about 17%. Load was effective on the wear rate while speed was dominant on the friction. Moreover, multiple fiber fractures and large numbers of debris were dominated for BFRC while fiber debondings, fiber removals and debris agglomerations were effective for Al2O3, but fiber fractures and flake types of debris were responsible for PTFE. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米al2o3和PTFE填料对玄武岩纤维增强环氧复合材料摩擦学性能的影响
采用田口L9设计,研究了纳米Al2O3和PTFE填料对成型与混合相结合制备的玄武岩织物增强环氧复合材料(BFRC)摩擦学性能的影响。用扫描电子显微镜研究了复合材料的微观结构和磨损表面。还建立了预测磨损和摩擦系数的回归方程。结果表明,比磨损率随载荷的增加和速度的降低而增加,但摩擦系数随速度的增加、PTFE的添加和介质载荷的增加而降低。此外,由于纳米PTFE的微观结构,其磨损率低于纳米Al2O3。PTFE使摩擦降低约17%。载荷对磨损率有效,而速度对摩擦起主导作用。此外,多纤维断裂和大量碎屑是BFRC的主要原因,而纤维脱粘、纤维去除和碎屑团聚对Al2O3有效,但纤维断裂和片状碎屑是PTFE的主要原因。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
期刊最新文献
Sliding wear behaviour of austempered ductile iron, boron steel and AISI 1045 steel of similar hardness: effect of microstructure, yield strength, and strain hardening Tribological aspects of magnesium matrix composites: a review of recent experimental studies Thin TiN coating on NiTi substrate through PVD method: improvement of the wear resistance Optimization of the Si3N4 coating formation through plasma spraying on Inconel 738 Traction performance modeling of worn footwear with perpendicular treads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1