The effects of different cross sections on the hydrodynamic behaviour of sandglass-type FPSOs exposed to regular waves

IF 2.6 4区 工程技术 Q1 Engineering Journal of Marine Engineering and Technology Pub Date : 2020-11-18 DOI:10.1080/20464177.2019.1638698
Adeleh Graylee, M. Yousefifard
{"title":"The effects of different cross sections on the hydrodynamic behaviour of sandglass-type FPSOs exposed to regular waves","authors":"Adeleh Graylee, M. Yousefifard","doi":"10.1080/20464177.2019.1638698","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical investigation on the hydrodynamic performance of sandglass-type FPSOs with four different cross sections. In order to estimate the hydrodynamic performance and utilise the results in the design stage of FPSOs, a frequency-domain numerical simulation program, ANSYS/AQWA software package, has been used. Numerical results were compared with experimental data and good agreement has been achieved in small amplitude regular wave cases. Based on the simulation results, it is concluded that polyhedral cross sections (especially 10-sided cross section) provide similar hydrodynamic performance compared with circular cross section in heave and pitch motions for all ranges of wave frequency. Therefore, it is possible to use these types of cross sections for FPSOs because of manufacturing simplicity.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"19 1","pages":"197 - 206"},"PeriodicalIF":2.6000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20464177.2019.1638698","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2019.1638698","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a numerical investigation on the hydrodynamic performance of sandglass-type FPSOs with four different cross sections. In order to estimate the hydrodynamic performance and utilise the results in the design stage of FPSOs, a frequency-domain numerical simulation program, ANSYS/AQWA software package, has been used. Numerical results were compared with experimental data and good agreement has been achieved in small amplitude regular wave cases. Based on the simulation results, it is concluded that polyhedral cross sections (especially 10-sided cross section) provide similar hydrodynamic performance compared with circular cross section in heave and pitch motions for all ranges of wave frequency. Therefore, it is possible to use these types of cross sections for FPSOs because of manufacturing simplicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同横截面对规则波作用下沙漏型FPSO水动力特性的影响
本文对四种不同截面的沙漏型FPSO的流体力学性能进行了数值研究。为了在FPSO的设计阶段估计流体动力学性能并利用结果,使用了频域数值模拟程序ANSYS/AQWA软件包。将数值结果与实验数据进行了比较,在小振幅规则波情况下取得了良好的一致性。基于模拟结果,得出结论:在所有波浪频率范围内,在升沉和俯仰运动中,多面体横截面(尤其是10边横截面)与圆形横截面相比具有相似的水动力性能。因此,由于制造的简单性,可以将这些类型的横截面用于FPSO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Marine Engineering and Technology
Journal of Marine Engineering and Technology 工程技术-工程:海洋
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include: • Fuel technology and Combustion • Power and Propulsion Systems • Noise and vibration • Offshore and Underwater Technology • Computing, IT and communication • Pumping and Pipeline Engineering • Safety and Environmental Assessment • Electrical and Electronic Systems and Machines • Vessel Manoeuvring and Stabilisation • Tribology and Power Transmission • Dynamic modelling, System Simulation and Control • Heat Transfer, Energy Conversion and Use • Renewable Energy and Sustainability • Materials and Corrosion • Heat Engine Development • Green Shipping • Hydrography • Subsea Operations • Cargo Handling and Containment • Pollution Reduction • Navigation • Vessel Management • Decommissioning • Salvage Procedures • Legislation • Ship and floating structure design • Robotics Salvage Procedures • Structural Integrity Cargo Handling and Containment • Marine resource and acquisition • Risk Analysis Robotics • Maintenance and Inspection Planning Vessel Management • Marine security • Risk Analysis • Legislation • Underwater Vehicles • Plant and Equipment • Structural Integrity • Installation and Repair • Plant and Equipment • Maintenance and Inspection Planning.
期刊最新文献
Biyonik Türbin Kanadı Tasarımında Aerodinamik Form Optimizasyonu Introduction of Multipurpose USVs and Their Application Examples Safety Evaluation for Autonomous Ship Technologies Current Status of Development on Maritime Autonomous Ship Systems (June 2023) Technologies to Effectively Utilize (Use as Fuel and Reuse) Ammonia and Enable Detoxification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1