Jing Ziyan , Li Guobin , Zhang Yajun , Xie Tianfeng , Feng Yuan , Zhao Binbin , Wang Hongbin , Dai Shuang , Yang Zhaoping , Yuan Xiaoyu , Shi Zhongsheng , Tian Xin
{"title":"Salt diapirism in the eastern margin of the Pre-Caspian Basin: Insight from physical experiments","authors":"Jing Ziyan , Li Guobin , Zhang Yajun , Xie Tianfeng , Feng Yuan , Zhao Binbin , Wang Hongbin , Dai Shuang , Yang Zhaoping , Yuan Xiaoyu , Shi Zhongsheng , Tian Xin","doi":"10.1016/j.jog.2022.101940","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Since the 1950 s, salt diapirism has been shown to be closely related to hydrocarbon accumulation and has been a hot spot of research activity in structural and petroleum geology. Many salt structural, such as salt wall, roller, pillow, welt and </span>anticline<span> have been formed in the Pre-Caspian Basin during the post-Kungurian (Lower Permian) times. Meanwhile, mechanisms of salt structure deformation and the influence of the sub-salt strata on salt diapirism is still unclear. Based on seismic data<span> and a geological model of the eastern margin of the Pre-Caspian Basin, physical simulation experiments of salt diapirism have been conceived. Performed to analyze, the dynamic process of salt structure deformation, and to clarify mechanisms of the salt diapirism and the relationships between the salt structures and the underlying strata. Differential loading seems to a principal mechanism accounting for sediment. The sedimentation rate of the overburden formations had a great impact on the salt structure forms and geometry. The physical experiments showed that: salt diapirism starts in the basin margin with </span></span></span>progradation of sediments and then continues down-slope toward the basin center. The height and width of the salt structures are influenced by dip angle of the sub-salt. The larger-scale salt structures occurred in the inner basin zones, followed the central slope zone and the basin margin with a large dip angle.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":"153 ","pages":"Article 101940"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370722000448","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Since the 1950 s, salt diapirism has been shown to be closely related to hydrocarbon accumulation and has been a hot spot of research activity in structural and petroleum geology. Many salt structural, such as salt wall, roller, pillow, welt and anticline have been formed in the Pre-Caspian Basin during the post-Kungurian (Lower Permian) times. Meanwhile, mechanisms of salt structure deformation and the influence of the sub-salt strata on salt diapirism is still unclear. Based on seismic data and a geological model of the eastern margin of the Pre-Caspian Basin, physical simulation experiments of salt diapirism have been conceived. Performed to analyze, the dynamic process of salt structure deformation, and to clarify mechanisms of the salt diapirism and the relationships between the salt structures and the underlying strata. Differential loading seems to a principal mechanism accounting for sediment. The sedimentation rate of the overburden formations had a great impact on the salt structure forms and geometry. The physical experiments showed that: salt diapirism starts in the basin margin with progradation of sediments and then continues down-slope toward the basin center. The height and width of the salt structures are influenced by dip angle of the sub-salt. The larger-scale salt structures occurred in the inner basin zones, followed the central slope zone and the basin margin with a large dip angle.
期刊介绍:
The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.