Dynamic linear models with adaptive discounting

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.09.006
Alisa Yusupova , Nicos G. Pavlidis , Efthymios G. Pavlidis
{"title":"Dynamic linear models with adaptive discounting","authors":"Alisa Yusupova ,&nbsp;Nicos G. Pavlidis ,&nbsp;Efthymios G. Pavlidis","doi":"10.1016/j.ijforecast.2022.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic linear models with discounting are state-space models that are sufficiently flexible, interpretable, and computationally efficient. As such they are increasingly applied in economics and finance. Successful modelling and forecasting with such models depends on an appropriate choice of the discount factor. In this work we develop an adaptive approach to sequentially estimate this parameter, which relies on the minimisation of the one-step-ahead forecast error. Simulated data and an in-depth empirical application to the problem of forecasting quarterly UK house prices show that our approach can significantly improve forecast accuracy at a computational cost that is orders of magnitude smaller than approaches based on sequential Monte Carlo. We also conduct an extensive evaluation of diverse forecast combination methods for the task of predicting UK house prices. Our results indicate that a recent density combination method can substantially improve forecast accuracy.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001376","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic linear models with discounting are state-space models that are sufficiently flexible, interpretable, and computationally efficient. As such they are increasingly applied in economics and finance. Successful modelling and forecasting with such models depends on an appropriate choice of the discount factor. In this work we develop an adaptive approach to sequentially estimate this parameter, which relies on the minimisation of the one-step-ahead forecast error. Simulated data and an in-depth empirical application to the problem of forecasting quarterly UK house prices show that our approach can significantly improve forecast accuracy at a computational cost that is orders of magnitude smaller than approaches based on sequential Monte Carlo. We also conduct an extensive evaluation of diverse forecast combination methods for the task of predicting UK house prices. Our results indicate that a recent density combination method can substantially improve forecast accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自适应折扣的动态线性模型
带有贴现的动态线性模型是足够灵活、可解释和计算效率高的状态空间模型。因此,它们越来越多地应用于经济和金融领域。这种模型的成功建模和预测取决于折现因子的适当选择。在这项工作中,我们开发了一种自适应方法来顺序估计该参数,它依赖于一步预测误差的最小化。模拟数据和对预测季度英国房价问题的深入经验应用表明,我们的方法可以显著提高预测精度,计算成本比基于顺序蒙特卡罗的方法小几个数量级。我们还对预测英国房价的各种预测组合方法进行了广泛的评估。结果表明,一种新的密度组合方法可以显著提高预报精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1