Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Interactions Pub Date : 2022-08-06 DOI:10.1080/17429145.2022.2108150
Andrea Crosino, A. Genre
{"title":"Peace talks: symbiotic signaling molecules in arbuscular mycorrhizas and their potential application","authors":"Andrea Crosino, A. Genre","doi":"10.1080/17429145.2022.2108150","DOIUrl":null,"url":null,"abstract":"ABSTRACT Since the Green Revolution, intensive application of agrochemicals has increased productivity in agriculture, at a great cost in terms of water pollution, loss of soil fertility and biodiversity, and negative effects on human health. Scientific advance and increasing public awareness are driving a change toward sustainable practices. In such a context, the symbiosis between plants and arbuscular mycorrhizal (AM) fungi is extremely promising: AM interaction improves plant mineral nutrition and stress tolerance. In turn, AM fungi receive plant photosynthesis-derived carbon. A complex chemical dialogue mediates plant-fungus recognition and symbiosis establishment: AM fungi perceive root-secreted strigolactones, which promote spore germination, hyphal growth, branching and metabolism. Host roots recognize their symbionts through chitin-derived molecules. Such Myc–factors activate a range of symbiotic responses, preparing the plant to a successful association. Here we review the most recent advances in knowledge of AM signaling molecules, with a focus on their possible application.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2108150","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT Since the Green Revolution, intensive application of agrochemicals has increased productivity in agriculture, at a great cost in terms of water pollution, loss of soil fertility and biodiversity, and negative effects on human health. Scientific advance and increasing public awareness are driving a change toward sustainable practices. In such a context, the symbiosis between plants and arbuscular mycorrhizal (AM) fungi is extremely promising: AM interaction improves plant mineral nutrition and stress tolerance. In turn, AM fungi receive plant photosynthesis-derived carbon. A complex chemical dialogue mediates plant-fungus recognition and symbiosis establishment: AM fungi perceive root-secreted strigolactones, which promote spore germination, hyphal growth, branching and metabolism. Host roots recognize their symbionts through chitin-derived molecules. Such Myc–factors activate a range of symbiotic responses, preparing the plant to a successful association. Here we review the most recent advances in knowledge of AM signaling molecules, with a focus on their possible application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
和平谈判:丛枝菌根中的共生信号分子及其潜在应用
自绿色革命以来,农用化学品的大量使用提高了农业生产力,但代价是水污染、土壤肥力和生物多样性的丧失以及对人类健康的负面影响。科学进步和公众意识的提高正在推动向可持续实践的转变。在这样的背景下,植物与丛枝菌根(AM)真菌之间的共生是非常有前途的:AM相互作用可以改善植物的矿物质营养和抗逆性。反过来,AM真菌接收植物光合作用产生的碳。一种复杂的化学对话介导了植物与真菌的识别和共生关系的建立:AM真菌感知根分泌的独脚金内酯,促进孢子萌发、菌丝生长、分支和代谢。寄主根系通过几丁质衍生的分子识别它们的共生体。这样的myc因子激活了一系列的共生反应,为植物的成功结合做准备。在这里,我们回顾了AM信号分子知识的最新进展,重点是它们可能的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
期刊最新文献
Transcriptome analysis of maize resistance to Fusarium verticillioides Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions Clarifying the effects of potential evapotranspiration and soil moisture on transpiration in secondary forests of birch in semi-arid regions of China Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato Root endophytic Phialocephala fortinii and Talaromyces verruculosus enhance growth and affect heavy metal tolerance of Miscanthus sinensis Andersson growing naturally at a mine site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1