CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-01-27 DOI:10.18186/thermal.1243491
Sattar Aljabair, Israa Alesbe, A. Alkhalaf
{"title":"CFD modeling of influenza virus diffusion during coughing and breathing in a ventilated room","authors":"Sattar Aljabair, Israa Alesbe, A. Alkhalaf","doi":"10.18186/thermal.1243491","DOIUrl":null,"url":null,"abstract":"The virus diffusion in a ventilated room with the droplets produced by coughing and breathing are presented by the Lagrangian model. When the human body is located in the middle of the room with two locations of AC, in front of and behind the human body, three angles of Air Conditioning (AC) gate are applied 0°, 30°, and 60° to show droplet particle diffusion in the room in these cases. Three types of coughing velocity profiles were selected, real human coughing, sinusoidal cough, and cough jet with one velocity profile of breathing as a step function to cover the inhaling and exhaling cycle. The simulation results show that the uncovered standing in the middle of the room, are more susceptible to infection for the bouncy and forced flow around the human body. Droplet particle moves in the room as a random diffusion and it is very sensitive to the thermal load inside the room, generally depends on the bouncy force and pressure force due to convection heat transfer. when the AC location at the opposite direction of coughing flow, the droplet travels a distance of about 3 m, 2.85 m, and 2.75 m for real cough, sinusoidal cough, and cough jet respectively. While the droplet travel distance is about 3.1 m, 3.2 m, and 2.9 m when the AC location is at the same direction of coughing flow. Finally, the adopted CFD modeling was also used to show the effects of different AC locations on coughing, breathing particle droplets distribution in different indoor spaces, such as buildings, hospitals, and public transports, Also, showed good visual demonstration and representation of the real physical processes.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1243491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The virus diffusion in a ventilated room with the droplets produced by coughing and breathing are presented by the Lagrangian model. When the human body is located in the middle of the room with two locations of AC, in front of and behind the human body, three angles of Air Conditioning (AC) gate are applied 0°, 30°, and 60° to show droplet particle diffusion in the room in these cases. Three types of coughing velocity profiles were selected, real human coughing, sinusoidal cough, and cough jet with one velocity profile of breathing as a step function to cover the inhaling and exhaling cycle. The simulation results show that the uncovered standing in the middle of the room, are more susceptible to infection for the bouncy and forced flow around the human body. Droplet particle moves in the room as a random diffusion and it is very sensitive to the thermal load inside the room, generally depends on the bouncy force and pressure force due to convection heat transfer. when the AC location at the opposite direction of coughing flow, the droplet travels a distance of about 3 m, 2.85 m, and 2.75 m for real cough, sinusoidal cough, and cough jet respectively. While the droplet travel distance is about 3.1 m, 3.2 m, and 2.9 m when the AC location is at the same direction of coughing flow. Finally, the adopted CFD modeling was also used to show the effects of different AC locations on coughing, breathing particle droplets distribution in different indoor spaces, such as buildings, hospitals, and public transports, Also, showed good visual demonstration and representation of the real physical processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在通风室内咳嗽和呼吸时流感病毒扩散的CFD模拟
拉格朗日模型描述了病毒在通风室内通过咳嗽和呼吸产生的飞沫进行扩散的过程。当人体位于房间中间,有两个空调位置时,分别在人体前面和后面,分别施加0°、30°和60°三个角度的空调门,以显示在这些情况下液滴颗粒在房间内的扩散情况。选择了三种类型的咳嗽速度曲线,即真实的人咳嗽、正弦咳嗽和以一个呼吸速度曲线作为阶跃函数覆盖吸气和呼气循环的咳嗽喷射。仿真结果表明,站在房间中间的无遮盖者,由于人体周围的弹性和强制流动,更容易受到感染。液滴颗粒在室内的运动是一种随机扩散,它对室内的热负荷非常敏感,一般依赖于对流传热产生的弹性力和压力力。当交流位置与咳嗽流方向相反时,真实咳嗽、正弦咳嗽和咳嗽射流的液滴距离分别约为3 m、2.85 m和2.75 m。当交流位置与咳嗽流方向相同时,液滴的传播距离分别为3.1 m、3.2 m和2.9 m。最后,采用CFD模型模拟了不同空调位置对不同室内空间(如建筑物、医院、公共交通等)咳嗽、呼吸颗粒液滴分布的影响,对真实物理过程进行了较好的可视化演示和再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1